distribute_fpn_proposals_compute.cc 5.7 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/distribute_fpn_proposals_compute.h"
#include <string>
#include <vector>
#include "lite/backends/arm/math/funcs.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

const int kBoxDim = 4;

template <typename T>
static inline T BBoxArea(const T* box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

void DistributeFpnProposalsCompute::Run() {
  auto& param = Param<operators::DistributeFpnProposalsParam>();
  const lite::Tensor* fpn_rois = param.fpn_rois;
  std::vector<lite::Tensor*> multi_fpn_rois = param.multi_fpn_rois;
  lite::Tensor* restore_index = param.restore_index;
  int min_level = param.min_level;
  int max_level = param.max_level;
  int refer_level = param.refer_level;
  int refer_scale = param.refer_scale;
  int num_level = max_level - min_level + 1;

  CHECK_EQ(fpn_rois->lod().size(), 1);
  auto fpn_rois_lod = fpn_rois->lod().back();
  int fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1];
  std::vector<int> target_level;
  // record the number of rois in each level
  std::vector<int> num_rois_level(num_level, 0);
  std::vector<int> num_rois_level_integral(num_level + 1, 0);
  for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
    auto fpn_rois_slice =
        fpn_rois->Slice<float>(static_cast<int64_t>(fpn_rois_lod[i]),
                               static_cast<int64_t>(fpn_rois_lod[i + 1]));
    const float* rois_data = fpn_rois_slice.data<float>();
    for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
      // get the target level of current rois
      float roi_scale = std::sqrt(BBoxArea(rois_data, false));
      int tgt_lvl = std::floor(
          std::log2(roi_scale / refer_scale + static_cast<float>(1e-6)) +
          refer_level);
      tgt_lvl = std::min(max_level, std::max(tgt_lvl, min_level));
      target_level.push_back(tgt_lvl);
      num_rois_level[tgt_lvl - min_level]++;
      rois_data += kBoxDim;
    }
  }
  // define the output rois
  // pointer which point to each level fpn rois
  std::vector<float*> multi_fpn_rois_data(num_level);
  // lod0 which will record the offset information of each level rois
  std::vector<std::vector<uint64_t>> multi_fpn_rois_lod0;
  for (int i = 0; i < num_level; ++i) {
    // allocate memory for each level rois
    multi_fpn_rois[i]->Resize({num_rois_level[i], kBoxDim});
    multi_fpn_rois_data[i] = multi_fpn_rois[i]->mutable_data<float>();
    std::vector<uint64_t> lod0(1, 0);
    multi_fpn_rois_lod0.push_back(lod0);
    // statistic start point for each level rois
    num_rois_level_integral[i + 1] =
        num_rois_level_integral[i] + num_rois_level[i];
  }
  restore_index->Resize({fpn_rois_num, 1});
  int* restore_index_data = restore_index->mutable_data<int>();
  std::vector<int> restore_index_inter(fpn_rois_num, -1);
  // distribute the rois into different fpn level by target level
  for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
    Tensor fpn_rois_slice =
        fpn_rois->Slice<float>(static_cast<int64_t>(fpn_rois_lod[i]),
                               static_cast<int64_t>(fpn_rois_lod[i + 1]));
    const float* rois_data = fpn_rois_slice.data<float>();
    size_t cur_offset = fpn_rois_lod[i];
    // std::vector<size_t > lod_offset[num_level];
    for (int j = 0; j < num_level; j++) {
      multi_fpn_rois_lod0[j].push_back(multi_fpn_rois_lod0[j][i]);
    }
    for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
      int lvl = target_level[cur_offset + j];
      memcpy(multi_fpn_rois_data[lvl - min_level],
             rois_data,
             kBoxDim * sizeof(float));
      multi_fpn_rois_data[lvl - min_level] += kBoxDim;
      int index_in_shuffle = num_rois_level_integral[lvl - min_level] +
                             multi_fpn_rois_lod0[lvl - min_level][i + 1];
      restore_index_inter[index_in_shuffle] = cur_offset + j;
      multi_fpn_rois_lod0[lvl - min_level][i + 1]++;
      rois_data += kBoxDim;
    }
  }
  for (int i = 0; i < fpn_rois_num; ++i) {
    restore_index_data[restore_index_inter[i]] = i;
  }
  // merge lod information into LoDTensor
  for (int i = 0; i < num_level; ++i) {
    lite::LoD lod;
    lod.emplace_back(multi_fpn_rois_lod0[i]);
    multi_fpn_rois[i]->set_lod(lod);
  }
  return;
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(distribute_fpn_proposals,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::DistributeFpnProposalsCompute,
                     def)
    .BindInput("FpnRois", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("MultiFpnRois", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("RestoreIndex", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();