conditional_block_compute.h 3.1 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/program.h"
#include "lite/operators/conditional_block_op.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/basic_profiler.h"
#include "lite/core/profile/precision_profiler.h"
J
juncaipeng 已提交
27
#include "lite/core/profile/profiler.h"
J
juncaipeng 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#endif

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

class CondExecutor {
  typedef std::shared_ptr<OpLite> OpPtr;

 public:
  CondExecutor(cpp::BlockDesc *block, Scope *scope, Place place)
      : scope_(scope), place_(place) {
    int32_t op_size = block->OpsSize();
    for (int32_t i = 0; i < op_size; ++i) {
      auto &op_desc = *block->template GetOp<cpp::OpDesc>(i);
      auto op_type = op_desc.Type();
      auto op_handler = lite::LiteOpRegistry::Global().Create(op_desc.Type());
      op_handler->Attach(op_desc, scope);

      auto hostplace = place_;
      hostplace.target = TARGET(kHost);
      auto kernels = op_handler->CreateKernels({place_, hostplace});
      CHECK_GT(kernels.size(), 0) << "cannot create kernel";
      op_handler->AttachKernel(kernels[0].get());
      op_handler->SetKernel(kernels);
      ops_of_block_.push_back(op_handler);
    }
  }

  void Run() {
J
juncaipeng 已提交
59 60 61 62 63
#ifdef LITE_WITH_PROFILE
#ifdef LITE_WITH_PRECISION_PROFILE
    lite::profile::Profiler profiler;
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
J
juncaipeng 已提交
64 65 66 67 68 69 70
    for (auto &op_handler : ops_of_block_) {
      op_handler->CheckShape();
      op_handler->InferShape();
#ifdef LITE_WITH_PROFILE
#ifdef LITE_WITH_PRECISION_PROFILE
      std::unique_ptr<KernelBase> kernel(op_handler->GetKernel());
      Instruction inst(op_handler, std::move(kernel));
J
juncaipeng 已提交
71
      inst.set_profiler(&profiler);
J
juncaipeng 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
      op_handler->Run();
#ifdef LITE_WITH_PROFILE
#ifdef LITE_WITH_PRECISION_PROFILE
      LITE_PRECISION_PROFILE(inst)
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
    }
  }

 private:
  Scope *scope_;
  Place place_;
  std::vector<OpPtr> ops_of_block_;
};

class ConditionalBlockCompute
    : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
 public:
  using param_t = operators::ConditionalBlockParam;

  void PrepareForRun() override;
  void Run() override;

  virtual ~ConditionalBlockCompute() = default;

 private:
  std::shared_ptr<CondExecutor> executor_;
};

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle