concat_op_test.cc 5.4 KB
Newer Older
J
jiaopu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/concat_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

void concat_ref(const std::shared_ptr<operators::ConcatOpLite> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = op_info->Input("X");
  std::vector<lite::Tensor*> inputs;
  for (auto var : x) {
    inputs.push_back(scope->FindVar(var)->GetMutable<lite::Tensor>());
  }
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  int axis = op_info->GetAttr<int>("axis");
  std::vector<lite::Tensor*> inputs_concat(inputs.size());
  for (int j = 0; j < inputs.size(); ++j) {
    inputs_concat[j] = inputs[j];
  }
  size_t num = inputs.size();
  int rows = 1;
  auto dim_0 = inputs[0]->dims();
  for (int i = 0; i < axis; ++i) {
    rows *= dim_0[i];
  }
  int out_rows = rows, out_cols = 0;
  std::vector<int64_t> inputs_cols(inputs.size());
  for (int i = 0; i < num; ++i) {
    int t_cols = inputs[i]->numel() / rows;
    out_cols += t_cols;
    inputs_cols[i] = t_cols;
  }
  for (int k = 0; k < out_rows; ++k) {
    float* dst_ptr = out->mutable_data<float>() + k * out_cols;
    int col_idx = 0;
    for (int j = 0; j < num; ++j) {
      int col_len = inputs_cols[j];
      const float* src_prt = inputs[j]->data<float>() + k * col_len;
      std::memcpy(dst_ptr + col_idx, src_prt, sizeof(float) * col_len);
      col_idx += col_len;
    }
  }
}

void test_concat(std::vector<std::vector<int64_t>> input, int axis) {
  std::string x_var_name = "x";
  std::string y_var_name = "y";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";

  // prepare input&output variables
  Scope scope;
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* y = scope.Var(y_var_name)->GetMutable<Tensor>();
  x->Resize(DDim(input[0]));
  y->Resize(DDim(input[1]));
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  CHECK_EQ(out->dims(), out_ref->dims());

  // initialize input&output data
  FillTensor<float>(x);
  FillTensor<float>(y);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("concat");
  opdesc.SetInput("X", {x_var_name, y_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  auto op = CreateOp<operators::ConcatOpLite>(opdesc, &scope);
  concat_ref(op);
  out_ref->CopyDataFrom(*out);

  Tensor input_x, input_y;
  input_x.Resize(DDim(input[0]));
  input_y.Resize(DDim(input[1]));
  transpose(x->mutable_data<float>(),
            input_x.mutable_data<float>(),
            {static_cast<int>(input[0][0]),
             static_cast<int>(input[0][1]),
             static_cast<int>(input[0][2]),
             static_cast<int>(input[0][3])},
            {0, 2, 3, 1});
  transpose(y->mutable_data<float>(),
            input_y.mutable_data<float>(),
            {static_cast<int>(input[1][0]),
             static_cast<int>(input[1][1]),
             static_cast<int>(input[1][2]),
             static_cast<int>(input[1][3])},
            {0, 2, 3, 1});
  auto os = out->dims();
  out->Resize({static_cast<int>(os[0]),
               static_cast<int>(os[2]),
               static_cast<int>(os[3]),
               static_cast<int>(os[1])});
  x->CopyDataFrom(input_x);
  y->CopyDataFrom(input_y);
  x->Resize({static_cast<int>(input[0][0]),
             static_cast<int>(input[0][2]),
             static_cast<int>(input[0][3]),
             static_cast<int>(input[0][1])});
  y->Resize({static_cast<int>(input[1][0]),
             static_cast<int>(input[1][2]),
             static_cast<int>(input[1][3]),
             static_cast<int>(input[1][1])});

  LaunchOp(op, {x_var_name, y_var_name}, {out_var_name});

  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();

  Tensor output_trans;
  output_trans.Resize(out->dims());
  transpose(out_data,
            output_trans.mutable_data<float>(),
            {static_cast<int>(os[0]),
             static_cast<int>(os[2]),
             static_cast<int>(os[3]),
             static_cast<int>(os[1])},
            {0, 3, 1, 2});
  out_data = output_trans.mutable_data<float>();

  for (int i = 0; i < out->dims().production(); i++) {
    VLOG(5) << i;
    EXPECT_NEAR(out_data[i], out_ref_data[i], 5e-4);
  }
}

TEST(MLUBridges, concat) {
  test_concat({{3, 3, 5, 2}, {2, 3, 5, 2}}, 0);
  test_concat({{3, 5, 5, 2}, {3, 1, 5, 2}}, 1);
  test_concat({{3, 3, 2, 2}, {3, 3, 4, 2}}, 2);
  test_concat({{3, 3, 5, 2}, {3, 3, 5, 6}}, 3);
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(concat, kMLU);