io.cpp 12.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
L
liuruilong 已提交
17 18

#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
21 22
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
23
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
24 25 26 27
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
28 29 30 31

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
32 33
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
34 35
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
36 37 38 39 40 41
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
42 43
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
44 45
  fclose(file);
  return data;
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::Variable *variable,
                               const framework::VarDesc &var_desc,
                               const std::string &file_path) {
  auto tensor = variable->GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
76
  char *data = Get_binary_data(file_path);
W
wangliu 已提交
77 78

  // 1. version
L
liuruilong 已提交
79 80
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
81 82

  // 2 Lod information
L
liuruilong 已提交
83 84 85
  uint32_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
86 87 88
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
89 90 91
    uint32_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);

W
wangliu 已提交
92
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
93 94 95

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
W
wangliu 已提交
96 97 98 99 100
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
101 102 103
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);

W
wangliu 已提交
104
  // 4. tensor desc
L
liuruilong 已提交
105 106 107
  uint32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
108
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
109 110 111 112

  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
W
wangliu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  const framework::TensorDesc &desc = var_desc.Tensor_desc();

  PaddleMobile__Framework__Proto__VarType__TensorDesc *tensor_desc = NULL;

  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
151 152 153 154 155
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }

  delete data;
W
wangliu 已提交
156 157 158 159
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
160
    const std::string &dirname, bool optimize) {
W
wangliu 已提交
161 162 163 164 165 166 167 168 169
  std::string model_filename = dirname + "/__model__";
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
      NULL, read_size, buf);
W
wangliu 已提交
170
  //
W
wangliu 已提交
171
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
172
  //
W
wangliu 已提交
173
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
174
  //
175
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
176 177 178 179 180

  framework::Program<Dtype, P> program;
  program.model_path = dirname;
  program.originProgram = originProgramDesc;

181
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
182 183 184
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
185
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
208 209
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
210 211
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
212 213
    program.optimizeProgram =
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
214
  }
L
liuruilong 已提交
215 216 217 218 219 220
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
221 222 223 224 225 226 227 228 229
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
230 231
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
232
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
247
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
  InitMemory();
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor,
                                    const std::string &file_path) {
L
liuruilong 已提交
263 264
  char *origin_data = Get_binary_data(file_path);
  char *data = origin_data;
W
wangliu 已提交
265 266

  // 1. version
L
liuruilong 已提交
267 268 269
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "version: " << version;
W
wangliu 已提交
270 271

  // 2 Lod information
L
liuruilong 已提交
272 273 274 275
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);
  DLOG << "lod_level: " << lod_level;

W
wangliu 已提交
276 277 278
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
279 280 281 282
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;

W
wangliu 已提交
283
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
284 285 286 287 288 289 290

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
291 292 293 294 295 296 297
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
298 299 300
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "tensor_version: " << tensor_version;
W
wangliu 已提交
301 302

  // 4. tensor desc
L
liuruilong 已提交
303 304 305 306
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);
  DLOG << "tensor desc size: " << size;

W
wangliu 已提交
307
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
308 309 310 311
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
L
liuruilong 已提交
329
      DLOG << " type size: " << type_size;
W
wangliu 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
348 349 350 351 352
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }

  delete origin_data;
W
wangliu 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
        LoadMemory(*var_desc, tensor,
                   program_.model_path + "/" + var_desc->Name());
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

template <typename Dtype, Precision P>
W
wangliu 已提交
379 380
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
381 382 383 384 385 386
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
387
      to_predict_program_->Block(0);
W
wangliu 已提交
388 389 390 391
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
W
wangliu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
406 407 408
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
409
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
410 411
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
412 413 414 415 416 417 418 419
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
420 421 422 423 424
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile