elementwise_grad_compute.cc 8.0 KB
Newer Older
X
xiaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/elementwise_grad_compute.h"
#include <string>
#include <vector>
#include "lite/backends/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
    return DDim();
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

void ElementwiseAddGradCompute::Run() {
  auto& param = Param<operators::ElementwiseGradParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  const float* out_grad_data = param.OutGrad->data<float>();
M
mapingshuo 已提交
79 80 81 82 83 84 85 86
  float* x_grad_data;
  float* y_grad_data;
  if (param.XGrad) {
    x_grad_data = param.XGrad->mutable_data<float>();
  }
  if (param.YGrad) {
    y_grad_data = param.YGrad->mutable_data<float>();
  }
X
xiaogang 已提交
87 88 89 90
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
M
mapingshuo 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104
  if (!param.XGrad) {
    CHECK(param.YGrad);
    lite::arm::math::elementwise_add_grad(
        out_grad_data, y_grad_data, y_dims.production());
    return;
  }

  if (!param.YGrad) {
    CHECK(param.XGrad);
    lite::arm::math::elementwise_add_grad(
        out_grad_data, x_grad_data, x_dims.production());
    return;
  }

X
xiaogang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_grad_broadcast(
        out_grad_data, y_grad_data, x_grad_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_grad_broadcast(
        out_grad_data, x_grad_data, y_grad_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_add_grad(
        out_grad_data, x_grad_data, x_dims.production());
    lite::arm::math::elementwise_add_grad(
        out_grad_data, y_grad_data, y_dims.production());
  }
}

void ElementwiseSubGradCompute::Run() {
  auto& param = Param<operators::ElementwiseGradParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  const float* out_data = param.OutGrad->data<float>();
M
mapingshuo 已提交
125 126 127 128 129 130 131 132
  float* x_grad_data;
  float* y_grad_data;
  if (param.XGrad) {
    x_grad_data = param.XGrad->mutable_data<float>();
  }
  if (param.YGrad) {
    y_grad_data = param.YGrad->mutable_data<float>();
  }
X
xiaogang 已提交
133 134 135 136
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
M
mapingshuo 已提交
137 138 139 140 141 142 143 144

  if (!param.XGrad || !param.YGrad) {
    CHECK(param.XGrad || param.YGrad);
    lite::arm::math::elementwise_sub_grad(
        out_data, x_grad_data, y_grad_data, y_dims.production());
    return;
  }

X
xiaogang 已提交
145
  if (x_dims.size() < y_dims.size()) {
M
mapingshuo 已提交
146
    LOG(FATAL) << "elewise sub grad don't support x_dims size < y_dims size";
X
xiaogang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  }
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_grad_broadcast(
        out_data, x_grad_data, y_grad_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_sub_grad(
        out_data, x_grad_data, y_grad_data, x_dims.production());
  }
}

template <typename T, PrecisionType PType>
void ElementwiseMulGradCompute<T, PType>::Run() {
  LOG(FATAL) << "elementwise mul_grad not implement yet";
}

void ElementwiseMaxGradCompute::Run() {
  LOG(FATAL) << "elementwise max_grad not implement yet";
}

void ElementwiseDivGradCompute::Run() {
  LOG(FATAL) << "elementwise div_grad not implement yet";
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

using elementwise_mul_grad_float =
    paddle::lite::kernels::arm::ElementwiseMulGradCompute<float,
                                                          PRECISION(kFloat)>;

REGISTER_LITE_KERNEL(elementwise_add_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseAddGradCompute,
                     def)
M
mapingshuo 已提交
185
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
186
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
M
mapingshuo 已提交
187 188 189
    .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
190 191 192 193 194 195 196 197
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_sub_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseSubGradCompute,
                     def)
M
mapingshuo 已提交
198
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
199
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
M
mapingshuo 已提交
200 201 202
    .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
203 204 205 206 207 208 209 210
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_div_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseDivGradCompute,
                     def)
M
mapingshuo 已提交
211
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
212
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
M
mapingshuo 已提交
213 214 215
    .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
216 217 218 219
    .Finalize();

REGISTER_LITE_KERNEL(
    elementwise_mul_grad, kARM, kFloat, kNCHW, elementwise_mul_grad_float, def)
M
mapingshuo 已提交
220
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
221
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
M
mapingshuo 已提交
222 223 224
    .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
225 226 227 228 229 230 231 232
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_max_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMaxGradCompute,
                     def)
M
mapingshuo 已提交
233
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
234
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
M
mapingshuo 已提交
235 236 237
    .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@GRAD", {LiteType::GetTensorTy(TARGET(kARM))})
X
xiaogang 已提交
238
    .Finalize();