cl_caller.cc 6.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/opencl/cl_caller.h"
Y
Yan Chunwei 已提交
16
#include <string>
17 18 19 20
#include "lite/backends/opencl/cl_context.h"
#include "lite/backends/opencl/cl_image.h"
#include "lite/backends/opencl/cl_runtime.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/core/tensor.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
static void CopyImageData(CLContext* context,
                          const CLImage& cl_image,
                          float* out) {
  int width = cl_image.image_dims()[0];
  int height = cl_image.image_dims()[1];

  float* image_data = new float[height * width * 4];
  cl::Image* image = cl_image.cl_image();
34 35
  cl::array<size_t, 3> origin = {0, 0, 0};
  cl::array<size_t, 3> region = {
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      static_cast<size_t>(width), static_cast<size_t>(height), 1};
  cl_int err = context->GetCommandQueue().enqueueReadImage(
      *image, CL_TRUE, origin, region, 0, 0, image_data, nullptr, nullptr);
  CL_CHECK_FATAL(err);

  auto* converter = cl_image.image_converter();
  converter->ImageToNCHW(
      image_data, out, cl_image.image_dims(), cl_image.tensor_dims());

  delete[] image_data;
}

bool InitOpenCLRuntime(std::string cl_path) {
  auto* runtime = CLRuntime::Global();
  runtime->set_cl_path(cl_path);
  return runtime->IsInitSuccess();
}

void elementwise_add(CLContext* context,
                     const float* in,
                     const DDim& in_dim,
                     const float* bias,
                     const DDim& bias_dim,
                     float* out,
                     const DDim& out_dim) {
  if (!(bias_dim.size() == 1 || bias_dim.size() == 4)) {
    LOG(FATAL) << "Error: bias dims is error";
    return;
  }
  auto kernel = bias_dim.size() == 1 ? context->GetKernel("channel_add")
                                     : context->GetKernel("elementwise_add");
  CLImage in_image;
  in_image.set_tensor_data(in, in_dim);
  in_image.InitNormalCLImage(context->GetContext());
  VLOG(3) << " --- Inpu image: " << in_image << " --- ";
  CLImage bias_image;
  bias_image.set_tensor_data(bias, bias_dim);
  bias_image.InitCLImage(context->GetContext());
  VLOG(3) << " --- Bias image: " << bias_image << " --- ";
  CLImage out_image;
  out_image.InitEmptyImage(context->GetContext(), out_dim);
  cl_int status;
  status = kernel.setArg(0, *in_image.cl_image());
  CL_CHECK_FATAL(status);
  status = kernel.setArg(1, *bias_image.cl_image());
  CL_CHECK_FATAL(status);
  status = kernel.setArg(2, *out_image.cl_image());
  CL_CHECK_FATAL(status);

  if (bias_dim.size() == 1) {
    int tensor_w = in_dim[3];
    status = kernel.setArg(3, tensor_w);
    CL_CHECK_FATAL(status);
  }
  size_t width = in_image.ImageWidth();
  size_t height = in_image.ImageHeight();
  auto global_work_size = cl::NDRange{width, height};
  status = context->GetCommandQueue().enqueueNDRangeKernel(
      kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr);
  CL_CHECK_FATAL(status);

  status = context->GetCommandQueue().finish();
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- Out image: " << out_image << " --- ";
  CopyImageData(context, out_image, out);
}

void pool(CLContext* context,
          const std::string pooling_type,
          const int pad_h,
          const int pad_w,
          const int stride_h,
          const int stride_w,
          const int ksize_h,
          const int ksize_w,
          const float* in,
          const DDim& in_dim,
          float* out,
          const DDim& out_dim) {
  auto kernel =
      context->GetKernel(string_format("pool_%s", pooling_type.c_str()));
  CLImage in_image;
  in_image.set_tensor_data(in, in_dim);
  in_image.InitNormalCLImage(context->GetContext());
  VLOG(3) << " --- Inpu image: " << in_image << " --- ";
  CLImage out_image;
  out_image.InitEmptyImage(context->GetContext(), out_dim);
  auto global_work_size = context->DefaultWorkSize(out_image);
  auto* in_converter =
      dynamic_cast<CLImageConverterNormal*>(in_image.image_converter());
  auto* out_converter =
      dynamic_cast<CLImageConverterNormal*>(out_image.image_converter());
  const int in_height = in_converter->HeightOfOneBlock();
  const int in_width = in_converter->WidthOfOneBlock();
  const int out_height = out_converter->HeightOfOneBlock();
  const int out_width = out_converter->WidthOfOneBlock();
  cl_int status;
  status = kernel.setArg(0, in_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(1, in_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(2, out_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(3, out_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(4, pad_h);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(5, pad_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(6, stride_h);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(7, stride_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(8, ksize_h);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(9, ksize_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(10, *in_image.cl_image());
  CL_CHECK_FATAL(status);
  status = kernel.setArg(11, *out_image.cl_image());
  CL_CHECK_FATAL(status);

  status = context->GetCommandQueue().enqueueNDRangeKernel(
      kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr);
  CL_CHECK_FATAL(status);

  status = context->GetCommandQueue().finish();
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- Out image: " << out_image << " --- ";
  CopyImageData(context, out_image, out);
}

}  // namespace lite
}  // namespace paddle