prior_box_compute.cc 3.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/prior_box_compute.h"
#include <string>
#include <vector>
18
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>* output_aspect_ratior) {
  constexpr float epsilon = 1e-6;
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior->push_back(ar);
      if (flip) {
        output_aspect_ratior->push_back(1.0f / ar);
      }
    }
  }
}

void PriorBoxCompute::Run() {
  auto& param = Param<operators::PriorBoxParam>();

  bool is_flip = param.flip;
  bool is_clip = param.clip;
  std::vector<float> min_size = param.min_sizes;
  std::vector<float> max_size = param.max_sizes;
  std::vector<float> aspect_ratio = param.aspect_ratios;
  std::vector<float> variance = param.variances_;
  int img_w = param.img_w;
  int img_h = param.img_h;
  float step_w = param.step_w;
  float step_h = param.step_h;
  float offset = param.offset;
  std::vector<float> aspect_ratios_vec;
  ExpandAspectRatios(aspect_ratio, is_flip, &aspect_ratios_vec);
  size_t prior_num = aspect_ratios_vec.size() * min_size.size();
  prior_num += max_size.size();
  std::vector<std::string> order = param.order;
68
  bool min_max_aspect_ratios_order = param.min_max_aspect_ratios_order;
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

  lite::arm::math::prior_box(param.input,
                             param.image,
                             &param.boxes,
                             &param.variances,
                             min_size,
                             max_size,
                             aspect_ratios_vec,
                             variance,
                             img_w,
                             img_h,
                             step_w,
                             step_h,
                             offset,
                             prior_num,
                             is_flip,
                             is_clip,
86 87
                             order,
                             min_max_aspect_ratios_order);
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(prior_box,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::PriorBoxCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Image", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();