test_reshape2_op.cpp 4.8 KB
Newer Older
L
lijiancheng0614 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_include.h"
#include "operators/reshape2_op.h"

namespace paddle_mobile {
namespace framework {

template <typename Dtype>
class TestReshape2Op {
 public:
  explicit TestReshape2Op(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
    }
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    for (auto block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      for (auto op : ops) {
        if (op->Type() == "reshape2") {
          DLOG << " attr size: " << op->GetAttrMap().size();
          std::unordered_map<std::string, Attribute> attrs = op->GetAttrMap();
          for (std::unordered_map<std::string, Attribute>::iterator it =
                   attrs.begin();
               it != attrs.end(); ++it) {
            DLOG << "  " << it->first << " " << it->second;
          }

          DLOG << " inputs size: " << op->GetInputs().size();
          VariableNameMap inputs = op->GetInputs();
          for (VariableNameMap::iterator it = inputs.begin();
               it != inputs.end(); ++it) {
            DLOG << "  " << it->first << " " << it->second;
          }

          DLOG << " outputs size: " << op->GetOutputs().size();
          VariableNameMap outputs = op->GetOutputs();
          for (VariableNameMap::iterator it = outputs.begin();
               it != outputs.end(); ++it) {
            DLOG << "  " << it->first << " " << it->second;
          }

          input_var_name = op->Input("X")[0];
          output_var_name = op->Output("Out")[0];
          std::shared_ptr<operators::Reshape2Op<Dtype, float>> op_ptr =
              std::make_shared<operators::Reshape2Op<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(op_ptr);
          return;
        }
      }
    }
  }

  std::shared_ptr<Tensor> predict(const Tensor &t) {
    auto scope = program_.scope;
    Variable *input_feed_value = scope->Var(input_var_name);
    auto tensor_input = input_feed_value->GetMutable<LoDTensor>();
    tensor_input->ShareDataWith(t);

    Variable *output = scope->Var(output_var_name);
    auto *output_tensor = output->GetMutable<LoDTensor>();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict(t, 0);

    return out_tensor;
  }

 private:
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;
  string input_var_name;
  string output_var_name;

  void predict(const Tensor &t, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }
  }
};

template class TestReshape2Op<CPU>;
}  // namespace framework
}  // namespace paddle_mobile

int main() {
  DLOG << "----------**********----------";
  DLOG << "begin to run Reshape2 Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  auto program = loader.Load(std::string(g_ocr) + "/model",
                             std::string(g_ocr) + "/params");

  paddle_mobile::framework::Tensor input;
  SetupTensor<float>(&input, {1, 4, 4}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *input_ptr = input.data<float>();
  for (int i = 0; i < 16; ++i) {
    *(input_ptr + i) = i;
  }
  DLOG << "input : ";
  for (int i = 0; i < input.numel(); ++i) {
    DLOG << " index " << i << " : " << input_ptr[i];
  }

  paddle_mobile::framework::TestReshape2Op<paddle_mobile::CPU> testReshape2Op(
      program);

  auto output = testReshape2Op.predict(input);
  auto *output_ptr = output->data<float>();

  DLOG << "output : ";
  for (int i = 0; i < output->numel(); ++i) {
    DLOG << " index " << i << " : " << output_ptr[i];
  }
  return 0;
}