protobuf-c.c 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Copyright (c) 2008-2015, Dave Benson and the protobuf-c authors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*! \file
 * Support library for `protoc-c` generated code.
 *
 * This file implements the public API used by the code generated
 * by `protoc-c`.
 *
 * \authors Dave Benson and the protobuf-c authors
 *
 * \copyright 2008-2014. Licensed under the terms of the [BSD-2-Clause] license.
 */

/**
 * \todo 64-BIT OPTIMIZATION: certain implementations use 32-bit math
 * even on 64-bit platforms (uint64_size, uint64_pack, parse_uint64).
 *
 * \todo Use size_t consistently.
 */

48 49
#include <stdlib.h> /* for malloc, free */
#include <string.h> /* for strcmp, strlen, memcpy, memmove, memset */
50 51 52

#include "protobuf-c.h"

53 54
#define TRUE 1
#define FALSE 0
55 56 57 58 59

#define PROTOBUF_C__ASSERT_NOT_REACHED() assert(0)

/* Workaround for Microsoft compilers. */
#ifdef _MSC_VER
60
#define inline __inline
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#endif

/**
 * \defgroup internal Internal functions and macros
 *
 * These are not exported by the library but are useful to developers working
 * on `libprotobuf-c` itself.
 */

/**
 * \defgroup macros Utility macros for manipulating structures
 *
 * Macros and constants used to manipulate the base "classes" generated by
 * `protobuf-c`. They also define limits and check correctness.
 *
 * \ingroup internal
 * @{
 */

/** The maximum length of a 64-bit integer in varint encoding. */
81
#define MAX_UINT64_ENCODED_SIZE 10
82 83

#ifndef PROTOBUF_C_UNPACK_ERROR
84
#define PROTOBUF_C_UNPACK_ERROR(...)
85 86 87 88 89 90 91 92 93 94 95
#endif

const char protobuf_c_empty_string[] = "";

/**
 * Internal `ProtobufCMessage` manipulation macro.
 *
 * Base macro for manipulating a `ProtobufCMessage`. Used by STRUCT_MEMBER() and
 * STRUCT_MEMBER_PTR().
 */
#define STRUCT_MEMBER_P(struct_p, struct_offset) \
96
  ((void *)((uint8_t *)(struct_p) + (struct_offset)))
97 98 99 100 101 102 103 104

/**
 * Return field in a `ProtobufCMessage` based on offset.
 *
 * Take a pointer to a `ProtobufCMessage` and find the field at the offset.
 * Cast it to the passed type.
 */
#define STRUCT_MEMBER(member_type, struct_p, struct_offset) \
105
  (*(member_type *)STRUCT_MEMBER_P((struct_p), (struct_offset)))
106 107 108 109 110 111 112 113

/**
 * Return field in a `ProtobufCMessage` based on offset.
 *
 * Take a pointer to a `ProtobufCMessage` and find the field at the offset. Cast
 * it to a pointer to the passed type.
 */
#define STRUCT_MEMBER_PTR(member_type, struct_p, struct_offset) \
114
  ((member_type *)STRUCT_MEMBER_P((struct_p), (struct_offset)))
115 116 117 118

/* Assertions for magic numbers. */

#define ASSERT_IS_ENUM_DESCRIPTOR(desc) \
119
  assert((desc)->magic == PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC)
120 121

#define ASSERT_IS_MESSAGE_DESCRIPTOR(desc) \
122
  assert((desc)->magic == PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC)
123 124

#define ASSERT_IS_MESSAGE(message) \
125
  ASSERT_IS_MESSAGE_DESCRIPTOR((message)->descriptor)
126 127

#define ASSERT_IS_SERVICE_DESCRIPTOR(desc) \
128
  assert((desc)->magic == PROTOBUF_C__SERVICE_DESCRIPTOR_MAGIC)
129 130 131 132 133

/**@}*/

/* --- version --- */

134
const char *protobuf_c_version(void) { return PROTOBUF_C_VERSION; }
135

136
uint32_t protobuf_c_version_number(void) { return PROTOBUF_C_VERSION_NUMBER; }
137 138 139

/* --- allocator --- */

140 141
static void *system_alloc(void *allocator_data, size_t size) {
  return malloc(size);
142 143
}

144
static void system_free(void *allocator_data, void *data) { free(data); }
145

146 147
static inline void *do_alloc(ProtobufCAllocator *allocator, size_t size) {
  return allocator->alloc(allocator->allocator_data, size);
148 149
}

150 151
static inline void do_free(ProtobufCAllocator *allocator, void *data) {
  if (data != NULL) allocator->free(allocator->allocator_data, data);
152 153 154 155 156 157 158 159
}

/*
 * This allocator uses the system's malloc() and free(). It is the default
 * allocator used if NULL is passed as the ProtobufCAllocator to an exported
 * function.
 */
static ProtobufCAllocator protobuf_c__allocator = {
160 161 162
    .alloc = &system_alloc,
    .free = &system_free,
    .allocator_data = NULL,
163 164 165 166
};

/* === buffer-simple === */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
void protobuf_c_buffer_simple_append(ProtobufCBuffer *buffer, size_t len,
                                     const uint8_t *data) {
  ProtobufCBufferSimple *simp = (ProtobufCBufferSimple *)buffer;
  size_t new_len = simp->len + len;

  if (new_len > simp->alloced) {
    ProtobufCAllocator *allocator = simp->allocator;
    size_t new_alloced = simp->alloced * 2;
    uint8_t *new_data;

    if (allocator == NULL) allocator = &protobuf_c__allocator;
    while (new_alloced < new_len) new_alloced += new_alloced;
    new_data = do_alloc(allocator, new_alloced);
    if (!new_data) return;
    memcpy(new_data, simp->data, simp->len);
    if (simp->must_free_data)
      do_free(allocator, simp->data);
    else
      simp->must_free_data = TRUE;
    simp->data = new_data;
    simp->alloced = new_alloced;
  }
  memcpy(simp->data + simp->len, data, len);
  simp->len = new_len;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
}

/**
 * \defgroup packedsz protobuf_c_message_get_packed_size() implementation
 *
 * Routines mainly used by protobuf_c_message_get_packed_size().
 *
 * \ingroup internal
 * @{
 */

/**
 * Return the number of bytes required to store the tag for the field. Includes
 * 3 bits for the wire-type, and a single bit that denotes the end-of-tag.
 *
 * \param number
 *      Field tag to encode.
 * \return
 *      Number of bytes required.
 */
211 212 213 214 215 216 217 218 219 220 221 222
static inline size_t get_tag_size(uint32_t number) {
  if (number < (1UL << 4)) {
    return 1;
  } else if (number < (1UL << 11)) {
    return 2;
  } else if (number < (1UL << 18)) {
    return 3;
  } else if (number < (1UL << 25)) {
    return 4;
  } else {
    return 5;
  }
223 224 225 226 227 228 229 230 231 232 233
}

/**
 * Return the number of bytes required to store a variable-length unsigned
 * 32-bit integer in base-128 varint encoding.
 *
 * \param v
 *      Value to encode.
 * \return
 *      Number of bytes required.
 */
234 235 236 237 238 239 240 241 242 243 244 245
static inline size_t uint32_size(uint32_t v) {
  if (v < (1UL << 7)) {
    return 1;
  } else if (v < (1UL << 14)) {
    return 2;
  } else if (v < (1UL << 21)) {
    return 3;
  } else if (v < (1UL << 28)) {
    return 4;
  } else {
    return 5;
  }
246 247 248 249 250 251 252 253 254 255 256
}

/**
 * Return the number of bytes required to store a variable-length signed 32-bit
 * integer in base-128 varint encoding.
 *
 * \param v
 *      Value to encode.
 * \return
 *      Number of bytes required.
 */
257 258 259 260 261 262 263 264 265 266 267 268 269 270
static inline size_t int32_size(int32_t v) {
  if (v < 0) {
    return 10;
  } else if (v < (1L << 7)) {
    return 1;
  } else if (v < (1L << 14)) {
    return 2;
  } else if (v < (1L << 21)) {
    return 3;
  } else if (v < (1L << 28)) {
    return 4;
  } else {
    return 5;
  }
271 272 273 274 275 276 277 278 279 280 281
}

/**
 * Return the ZigZag-encoded 32-bit unsigned integer form of a 32-bit signed
 * integer.
 *
 * \param v
 *      Value to encode.
 * \return
 *      ZigZag encoded integer.
 */
282 283 284 285 286
static inline uint32_t zigzag32(int32_t v) {
  if (v < 0)
    return (-(uint32_t)v) * 2 - 1;
  else
    return (uint32_t)(v)*2;
287 288 289 290 291 292 293 294 295 296 297 298
}

/**
 * Return the number of bytes required to store a signed 32-bit integer,
 * converted to an unsigned 32-bit integer with ZigZag encoding, using base-128
 * varint encoding.
 *
 * \param v
 *      Value to encode.
 * \return
 *      Number of bytes required.
 */
299
static inline size_t sint32_size(int32_t v) { return uint32_size(zigzag32(v)); }
300 301 302 303 304 305 306 307 308 309

/**
 * Return the number of bytes required to store a 64-bit unsigned integer in
 * base-128 varint encoding.
 *
 * \param v
 *      Value to encode.
 * \return
 *      Number of bytes required.
 */
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static inline size_t uint64_size(uint64_t v) {
  uint32_t upper_v = (uint32_t)(v >> 32);

  if (upper_v == 0) {
    return uint32_size((uint32_t)v);
  } else if (upper_v < (1UL << 3)) {
    return 5;
  } else if (upper_v < (1UL << 10)) {
    return 6;
  } else if (upper_v < (1UL << 17)) {
    return 7;
  } else if (upper_v < (1UL << 24)) {
    return 8;
  } else if (upper_v < (1UL << 31)) {
    return 9;
  } else {
    return 10;
  }
328 329 330 331 332 333 334 335 336 337 338
}

/**
 * Return the ZigZag-encoded 64-bit unsigned integer form of a 64-bit signed
 * integer.
 *
 * \param v
 *      Value to encode.
 * \return
 *      ZigZag encoded integer.
 */
339 340 341 342 343
static inline uint64_t zigzag64(int64_t v) {
  if (v < 0)
    return (-(uint64_t)v) * 2 - 1;
  else
    return (uint64_t)(v)*2;
344 345 346 347 348 349 350 351 352 353 354 355
}

/**
 * Return the number of bytes required to store a signed 64-bit integer,
 * converted to an unsigned 64-bit integer with ZigZag encoding, using base-128
 * varint encoding.
 *
 * \param v
 *      Value to encode.
 * \return
 *      Number of bytes required.
 */
356
static inline size_t sint64_size(int64_t v) { return uint64_size(zigzag64(v)); }
357 358 359 360 361 362 363 364 365 366 367 368

/**
 * Calculate the serialized size of a single required message field, including
 * the space needed by the preceding tag.
 *
 * \param field
 *      Field descriptor for member.
 * \param member
 *      Field to encode.
 * \return
 *      Number of bytes required.
 */
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static size_t required_field_get_packed_size(
    const ProtobufCFieldDescriptor *field, const void *member) {
  size_t rv = get_tag_size(field->id);

  switch (field->type) {
    case PROTOBUF_C_TYPE_SINT32:
      return rv + sint32_size(*(const int32_t *)member);
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_INT32:
      return rv + int32_size(*(const int32_t *)member);
    case PROTOBUF_C_TYPE_UINT32:
      return rv + uint32_size(*(const uint32_t *)member);
    case PROTOBUF_C_TYPE_SINT64:
      return rv + sint64_size(*(const int64_t *)member);
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
      return rv + uint64_size(*(const uint64_t *)member);
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
      return rv + 4;
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
      return rv + 8;
    case PROTOBUF_C_TYPE_BOOL:
      return rv + 1;
    case PROTOBUF_C_TYPE_FLOAT:
      return rv + 4;
    case PROTOBUF_C_TYPE_DOUBLE:
      return rv + 8;
    case PROTOBUF_C_TYPE_STRING: {
      const char *str = *(char *const *)member;
      size_t len = str ? strlen(str) : 0;
      return rv + uint32_size(len) + len;
    }
    case PROTOBUF_C_TYPE_BYTES: {
      size_t len = ((const ProtobufCBinaryData *)member)->len;
      return rv + uint32_size(len) + len;
    }
    case PROTOBUF_C_TYPE_MESSAGE: {
      const ProtobufCMessage *msg = *(ProtobufCMessage *const *)member;
      size_t subrv = msg ? protobuf_c_message_get_packed_size(msg) : 0;
      return rv + uint32_size(subrv) + subrv;
    }
  }
  PROTOBUF_C__ASSERT_NOT_REACHED();
  return 0;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
}

/**
 * Calculate the serialized size of a single oneof message field, including
 * the space needed by the preceding tag. Returns 0 if the oneof field isn't
 * selected or is not set.
 *
 * \param field
 *      Field descriptor for member.
 * \param oneof_case
 *      Enum value that selects the field in the oneof.
 * \param member
 *      Field to encode.
 * \return
 *      Number of bytes required.
 */
431 432 433 434 435 436 437 438 439 440 441 442
static size_t oneof_field_get_packed_size(const ProtobufCFieldDescriptor *field,
                                          uint32_t oneof_case,
                                          const void *member) {
  if (oneof_case != field->id) {
    return 0;
  }
  if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
      field->type == PROTOBUF_C_TYPE_STRING) {
    const void *ptr = *(const void *const *)member;
    if (ptr == NULL || ptr == field->default_value) return 0;
  }
  return required_field_get_packed_size(field, member);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
}

/**
 * Calculate the serialized size of a single optional message field, including
 * the space needed by the preceding tag. Returns 0 if the optional field isn't
 * set.
 *
 * \param field
 *      Field descriptor for member.
 * \param has
 *      True if the field exists, false if not.
 * \param member
 *      Field to encode.
 * \return
 *      Number of bytes required.
 */
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static size_t optional_field_get_packed_size(
    const ProtobufCFieldDescriptor *field, const protobuf_c_boolean has,
    const void *member) {
  if (field->type == PROTOBUF_C_TYPE_MESSAGE ||
      field->type == PROTOBUF_C_TYPE_STRING) {
    const void *ptr = *(const void *const *)member;
    if (ptr == NULL || ptr == field->default_value) return 0;
  } else {
    if (!has) return 0;
  }
  return required_field_get_packed_size(field, member);
}

static protobuf_c_boolean field_is_zeroish(
    const ProtobufCFieldDescriptor *field, const void *member) {
  protobuf_c_boolean ret = FALSE;

  switch (field->type) {
    case PROTOBUF_C_TYPE_BOOL:
      ret = (0 == *(const protobuf_c_boolean *)member);
      break;
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_SINT32:
    case PROTOBUF_C_TYPE_INT32:
    case PROTOBUF_C_TYPE_UINT32:
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
      ret = (0 == *(const uint32_t *)member);
      break;
    case PROTOBUF_C_TYPE_SINT64:
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
      ret = (0 == *(const uint64_t *)member);
      break;
    case PROTOBUF_C_TYPE_FLOAT:
      ret = (0 == *(const float *)member);
      break;
    case PROTOBUF_C_TYPE_DOUBLE:
      ret = (0 == *(const double *)member);
      break;
    case PROTOBUF_C_TYPE_STRING:
      ret = (NULL == *(const char *const *)member) ||
            ('\0' == **(const char *const *)member);
      break;
    case PROTOBUF_C_TYPE_BYTES:
    case PROTOBUF_C_TYPE_MESSAGE:
      ret = (NULL == *(const void *const *)member);
      break;
    default:
      ret = TRUE;
      break;
  }

  return ret;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

/**
 * Calculate the serialized size of a single unlabeled message field, including
 * the space needed by the preceding tag. Returns 0 if the field isn't set or
 * if it is set to a "zeroish" value (null pointer or 0 for numerical values).
 * Unlabeled fields are supported only in proto3.
 *
 * \param field
 *      Field descriptor for member.
 * \param member
 *      Field to encode.
 * \return
 *      Number of bytes required.
 */
530 531 532 533
static size_t unlabeled_field_get_packed_size(
    const ProtobufCFieldDescriptor *field, const void *member) {
  if (field_is_zeroish(field, member)) return 0;
  return required_field_get_packed_size(field, member);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

/**
 * Calculate the serialized size of repeated message fields, which may consist
 * of any number of values (including 0). Includes the space needed by the
 * preceding tags (as needed).
 *
 * \param field
 *      Field descriptor for member.
 * \param count
 *      Number of repeated field members.
 * \param member
 *      Field to encode.
 * \return
 *      Number of bytes required.
 */
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static size_t repeated_field_get_packed_size(
    const ProtobufCFieldDescriptor *field, size_t count, const void *member) {
  size_t header_size;
  size_t rv = 0;
  unsigned i;
  void *array = *(void *const *)member;

  if (count == 0) return 0;
  header_size = get_tag_size(field->id);
  if (0 == (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED)) header_size *= count;

  switch (field->type) {
    case PROTOBUF_C_TYPE_SINT32:
      for (i = 0; i < count; i++) rv += sint32_size(((int32_t *)array)[i]);
      break;
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_INT32:
      for (i = 0; i < count; i++) rv += int32_size(((int32_t *)array)[i]);
      break;
    case PROTOBUF_C_TYPE_UINT32:
      for (i = 0; i < count; i++) rv += uint32_size(((uint32_t *)array)[i]);
      break;
    case PROTOBUF_C_TYPE_SINT64:
      for (i = 0; i < count; i++) rv += sint64_size(((int64_t *)array)[i]);
      break;
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
      for (i = 0; i < count; i++) rv += uint64_size(((uint64_t *)array)[i]);
      break;
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
    case PROTOBUF_C_TYPE_FLOAT:
      rv += 4 * count;
      break;
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
    case PROTOBUF_C_TYPE_DOUBLE:
      rv += 8 * count;
      break;
    case PROTOBUF_C_TYPE_BOOL:
      rv += count;
      break;
    case PROTOBUF_C_TYPE_STRING:
      for (i = 0; i < count; i++) {
        size_t len = strlen(((char **)array)[i]);
        rv += uint32_size(len) + len;
      }
      break;
    case PROTOBUF_C_TYPE_BYTES:
      for (i = 0; i < count; i++) {
        size_t len = ((ProtobufCBinaryData *)array)[i].len;
        rv += uint32_size(len) + len;
      }
      break;
    case PROTOBUF_C_TYPE_MESSAGE:
      for (i = 0; i < count; i++) {
        size_t len =
            protobuf_c_message_get_packed_size(((ProtobufCMessage **)array)[i]);
        rv += uint32_size(len) + len;
      }
      break;
  }

  if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED))
    header_size += uint32_size(rv);
  return header_size + rv;
616 617 618 619 620 621 622 623 624 625 626 627
}

/**
 * Calculate the serialized size of an unknown field, i.e. one that is passed
 * through mostly uninterpreted. This is required for forward compatibility if
 * new fields are added to the message descriptor.
 *
 * \param field
 *      Unknown field type.
 * \return
 *      Number of bytes required.
 */
628 629 630
static inline size_t unknown_field_get_packed_size(
    const ProtobufCMessageUnknownField *field) {
  return get_tag_size(field->tag) + field->len;
631 632 633 634 635 636 637
}

/**@}*/

/*
 * Calculate the serialized size of the message.
 */
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
size_t protobuf_c_message_get_packed_size(const ProtobufCMessage *message) {
  unsigned i;
  size_t rv = 0;

  ASSERT_IS_MESSAGE(message);
  for (i = 0; i < message->descriptor->n_fields; i++) {
    const ProtobufCFieldDescriptor *field = message->descriptor->fields + i;
    const void *member = ((const char *)message) + field->offset;
    const void *qmember = ((const char *)message) + field->quantifier_offset;

    if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
      rv += required_field_get_packed_size(field, member);
    } else if ((field->label == PROTOBUF_C_LABEL_OPTIONAL ||
                field->label == PROTOBUF_C_LABEL_NONE) &&
               (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF))) {
      rv += oneof_field_get_packed_size(field, *(const uint32_t *)qmember,
                                        member);
    } else if (field->label == PROTOBUF_C_LABEL_OPTIONAL) {
      rv += optional_field_get_packed_size(
          field, *(protobuf_c_boolean *)qmember, member);
    } else if (field->label == PROTOBUF_C_LABEL_NONE) {
      rv += unlabeled_field_get_packed_size(field, member);
    } else {
      rv += repeated_field_get_packed_size(field, *(const size_t *)qmember,
                                           member);
    }
  }
  for (i = 0; i < message->n_unknown_fields; i++)
    rv += unknown_field_get_packed_size(&message->unknown_fields[i]);
  return rv;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

/**
 * \defgroup pack protobuf_c_message_pack() implementation
 *
 * Routines mainly used by protobuf_c_message_pack().
 *
 * \ingroup internal
 * @{
 */

/**
 * Pack an unsigned 32-bit integer in base-128 varint encoding and return the
 * number of bytes written, which must be 5 or less.
 *
 * \param value
 *      Value to encode.
 * \param[out] out
 *      Packed value.
 * \return
 *      Number of bytes written to `out`.
 */
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static inline size_t uint32_pack(uint32_t value, uint8_t *out) {
  unsigned rv = 0;

  if (value >= 0x80) {
    out[rv++] = value | 0x80;
    value >>= 7;
    if (value >= 0x80) {
      out[rv++] = value | 0x80;
      value >>= 7;
      if (value >= 0x80) {
        out[rv++] = value | 0x80;
        value >>= 7;
        if (value >= 0x80) {
          out[rv++] = value | 0x80;
          value >>= 7;
        }
      }
    }
  }
  /* assert: value<128 */
  out[rv++] = value;
  return rv;
712 713 714
}

/**
H
hjchen2 已提交
715 716
 * Pack a 64-bit unsigned integer using base-128 varint encoding and return the
 * number of bytes written.
717
 *
H
hjchen2 已提交
718 719 720 721
 * \param value
 *      Value to encode.
 * \param[out] out
 *      Packed value.
722
 * \return
H
hjchen2 已提交
723
 *      Number of bytes written to `out`.
724
 */
H
hjchen2 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
static size_t uint64_pack(uint64_t value, uint8_t *out) {
  uint32_t hi = (uint32_t)(value >> 32);
  uint32_t lo = (uint32_t)value;
  unsigned rv;

  if (hi == 0) return uint32_pack((uint32_t)lo, out);
  out[0] = (lo) | 0x80;
  out[1] = (lo >> 7) | 0x80;
  out[2] = (lo >> 14) | 0x80;
  out[3] = (lo >> 21) | 0x80;
  if (hi < 8) {
    out[4] = (hi << 4) | (lo >> 28);
    return 5;
738
  } else {
H
hjchen2 已提交
739 740
    out[4] = ((hi & 7) << 4) | (lo >> 28) | 0x80;
    hi >>= 3;
741
  }
H
hjchen2 已提交
742 743 744 745 746 747 748
  rv = 5;
  while (hi >= 128) {
    out[rv++] = hi | 0x80;
    hi >>= 7;
  }
  out[rv++] = hi;
  return rv;
749 750 751
}

/**
H
hjchen2 已提交
752 753
 * Pack a ProtobufCBinaryData and return the number of bytes written. The output
 * includes a length delimiter.
754
 *
H
hjchen2 已提交
755 756 757 758
 * \param bd
 *      ProtobufCBinaryData to encode.
 * \param[out] out
 *      Packed value.
759
 * \return
H
hjchen2 已提交
760
 *      Number of bytes written to `out`.
761
 */
H
hjchen2 已提交
762 763 764 765 766 767
static inline size_t binary_data_pack(const ProtobufCBinaryData *bd,
                                      uint8_t *out) {
  size_t len = bd->len;
  size_t rv = uint32_pack(len, out);
  memcpy(out + rv, bd->data, len);
  return rv + len;
768 769 770
}

/**
H
hjchen2 已提交
771
 * Pack a field tag.
772
 *
H
hjchen2 已提交
773 774 775 776 777 778 779 780
 * Wire-type will be added in required_field_pack().
 *
 * \todo Just call uint64_pack on 64-bit platforms.
 *
 * \param id
 *      Tag value to encode.
 * \param[out] out
 *      Packed value.
781
 * \return
H
hjchen2 已提交
782
 *      Number of bytes written to `out`.
783
 */
H
hjchen2 已提交
784 785 786 787 788
static size_t tag_pack(uint32_t id, uint8_t *out) {
  if (id < (1UL << (32 - 3)))
    return uint32_pack(id << 3, out);
  else
    return uint64_pack(((uint64_t)id) << 3, out);
789 790 791
}

/**
H
hjchen2 已提交
792
 * Given a field type, return the in-memory size.
793
 *
H
hjchen2 已提交
794 795 796 797
 * \todo Implement as a table lookup.
 *
 * \param type
 *      Field type.
798
 * \return
H
hjchen2 已提交
799
 *      Size of the field.
800
 */
H
hjchen2 已提交
801 802 803 804 805
static inline size_t sizeof_elt_in_repeated_array(ProtobufCType type) {
  switch (type) {
    case PROTOBUF_C_TYPE_SINT32:
    case PROTOBUF_C_TYPE_INT32:
    case PROTOBUF_C_TYPE_UINT32:
806 807 808 809
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
    case PROTOBUF_C_TYPE_FLOAT:
    case PROTOBUF_C_TYPE_ENUM:
H
hjchen2 已提交
810
      return 4;
811 812 813
    case PROTOBUF_C_TYPE_SINT64:
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
H
hjchen2 已提交
814 815 816 817
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
    case PROTOBUF_C_TYPE_DOUBLE:
      return 8;
818
    case PROTOBUF_C_TYPE_BOOL:
H
hjchen2 已提交
819 820 821 822 823 824
      return sizeof(protobuf_c_boolean);
    case PROTOBUF_C_TYPE_STRING:
    case PROTOBUF_C_TYPE_MESSAGE:
      return sizeof(void *);
    case PROTOBUF_C_TYPE_BYTES:
      return sizeof(ProtobufCBinaryData);
825
  }
H
hjchen2 已提交
826 827
  PROTOBUF_C__ASSERT_NOT_REACHED();
  return 0;
828 829
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static inline int int_range_lookup(unsigned n_ranges,
                                   const ProtobufCIntRange *ranges, int value) {
  unsigned n;
  unsigned start;

  if (n_ranges == 0) return -1;
  start = 0;
  n = n_ranges;
  while (n > 1) {
    unsigned mid = start + n / 2;

    if (value < ranges[mid].start_value) {
      n = mid - start;
    } else if (value >=
               ranges[mid].start_value +
                   (int)(ranges[mid + 1].orig_index - ranges[mid].orig_index)) {
      unsigned new_start = mid + 1;
      n = start + n - new_start;
      start = new_start;
    } else
      return (value - ranges[mid].start_value) + ranges[mid].orig_index;
  }
  if (n > 0) {
    unsigned start_orig_index = ranges[start].orig_index;
    unsigned range_size = ranges[start + 1].orig_index - start_orig_index;

    if (ranges[start].start_value <= value &&
        value < (int)(ranges[start].start_value + range_size)) {
      return (value - ranges[start].start_value) + start_orig_index;
    }
  }
  return -1;
}

static size_t parse_tag_and_wiretype(size_t len, const uint8_t *data,
                                     uint32_t *tag_out,
                                     ProtobufCWireType *wiretype_out) {
  unsigned max_rv = len > 5 ? 5 : len;
  uint32_t tag = (data[0] & 0x7f) >> 3;
  unsigned shift = 4;
  unsigned rv;

  *wiretype_out = data[0] & 7;
  if ((data[0] & 0x80) == 0) {
    *tag_out = tag;
    return 1;
  }
  for (rv = 1; rv < max_rv; rv++) {
    if (data[rv] & 0x80) {
      tag |= (data[rv] & 0x7f) << shift;
      shift += 7;
    } else {
      tag |= data[rv] << shift;
      *tag_out = tag;
      return rv + 1;
    }
  }
  return 0; /* error: bad header */
888 889 890 891 892 893 894
}

/* sizeof(ScannedMember) must be <= (1UL<<BOUND_SIZEOF_SCANNED_MEMBER_LOG2) */
#define BOUND_SIZEOF_SCANNED_MEMBER_LOG2 5
typedef struct _ScannedMember ScannedMember;
/** Field as it's being read. */
struct _ScannedMember {
895 896 897 898 899 900
  uint32_t tag;                          /**< Field tag. */
  uint8_t wire_type;                     /**< Field type. */
  uint8_t length_prefix_len;             /**< Prefix length. */
  const ProtobufCFieldDescriptor *field; /**< Field descriptor. */
  size_t len;                            /**< Field length. */
  const uint8_t *data;                   /**< Pointer to field data. */
901 902
};

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static inline uint32_t scan_length_prefixed_data(size_t len,
                                                 const uint8_t *data,
                                                 size_t *prefix_len_out) {
  unsigned hdr_max = len < 5 ? len : 5;
  unsigned hdr_len;
  uint32_t val = 0;
  unsigned i;
  unsigned shift = 0;

  for (i = 0; i < hdr_max; i++) {
    val |= (data[i] & 0x7f) << shift;
    shift += 7;
    if ((data[i] & 0x80) == 0) break;
  }
  if (i == hdr_max) {
    PROTOBUF_C_UNPACK_ERROR("error parsing length for length-prefixed data");
    return 0;
  }
  hdr_len = i + 1;
  *prefix_len_out = hdr_len;
  if (hdr_len + val > len) {
    PROTOBUF_C_UNPACK_ERROR("data too short after length-prefix of %u", val);
    return 0;
  }
  return hdr_len + val;
}

static size_t max_b128_numbers(size_t len, const uint8_t *data) {
  size_t rv = 0;
  while (len--)
    if ((*data++ & 0x80) == 0) ++rv;
  return rv;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/**@}*/

/**
 * Merge earlier message into a latter message.
 *
 * For numeric types and strings, if the same value appears multiple
 * times, the parser accepts the last value it sees. For embedded
 * message fields, the parser merges multiple instances of the same
 * field. That is, all singular scalar fields in the latter instance
 * replace those in the former, singular embedded messages are merged,
 * and repeated fields are concatenated.
 *
 * The earlier message should be freed after calling this function, as
 * some of its fields may have been reused and changed to their default
 * values during the merge.
 */
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static protobuf_c_boolean merge_messages(ProtobufCMessage *earlier_msg,
                                         ProtobufCMessage *latter_msg,
                                         ProtobufCAllocator *allocator) {
  unsigned i;
  const ProtobufCFieldDescriptor *fields = latter_msg->descriptor->fields;
  for (i = 0; i < latter_msg->descriptor->n_fields; i++) {
    if (fields[i].label == PROTOBUF_C_LABEL_REPEATED) {
      size_t *n_earlier =
          STRUCT_MEMBER_PTR(size_t, earlier_msg, fields[i].quantifier_offset);
      uint8_t **p_earlier =
          STRUCT_MEMBER_PTR(uint8_t *, earlier_msg, fields[i].offset);
      size_t *n_latter =
          STRUCT_MEMBER_PTR(size_t, latter_msg, fields[i].quantifier_offset);
      uint8_t **p_latter =
          STRUCT_MEMBER_PTR(uint8_t *, latter_msg, fields[i].offset);

      if (*n_earlier > 0) {
        if (*n_latter > 0) {
          /* Concatenate the repeated field */
          size_t el_size = sizeof_elt_in_repeated_array(fields[i].type);
          uint8_t *new_field;

          new_field = do_alloc(allocator, (*n_earlier + *n_latter) * el_size);
          if (!new_field) return FALSE;

          memcpy(new_field, *p_earlier, *n_earlier * el_size);
          memcpy(new_field + *n_earlier * el_size, *p_latter,
                 *n_latter * el_size);

          do_free(allocator, *p_latter);
          do_free(allocator, *p_earlier);
          *p_latter = new_field;
          *n_latter = *n_earlier + *n_latter;
        } else {
          /* Zero copy the repeated field from the earlier message */
          *n_latter = *n_earlier;
          *p_latter = *p_earlier;
        }
        /* Make sure the field does not get double freed */
        *n_earlier = 0;
        *p_earlier = 0;
      }
    } else if (fields[i].label == PROTOBUF_C_LABEL_OPTIONAL ||
               fields[i].label == PROTOBUF_C_LABEL_NONE) {
      const ProtobufCFieldDescriptor *field;
      uint32_t *earlier_case_p =
          STRUCT_MEMBER_PTR(uint32_t, earlier_msg, fields[i].quantifier_offset);
      uint32_t *latter_case_p =
          STRUCT_MEMBER_PTR(uint32_t, latter_msg, fields[i].quantifier_offset);
      protobuf_c_boolean need_to_merge = FALSE;
      void *earlier_elem;
      void *latter_elem;
      const void *def_val;

      if (fields[i].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) {
        if (*latter_case_p == 0) {
          /* lookup correct oneof field */
          int field_index = int_range_lookup(
              latter_msg->descriptor->n_field_ranges,
              latter_msg->descriptor->field_ranges, *earlier_case_p);
          field = latter_msg->descriptor->fields + field_index;
        } else {
          /* Oneof is present in the latter message, move on */
          continue;
        }
      } else {
        field = &fields[i];
      }

      earlier_elem = STRUCT_MEMBER_P(earlier_msg, field->offset);
      latter_elem = STRUCT_MEMBER_P(latter_msg, field->offset);
      def_val = field->default_value;

      switch (field->type) {
        case PROTOBUF_C_TYPE_MESSAGE: {
          ProtobufCMessage *em = *(ProtobufCMessage **)earlier_elem;
          ProtobufCMessage *lm = *(ProtobufCMessage **)latter_elem;
          if (em != NULL) {
            if (lm != NULL) {
              if (!merge_messages(em, lm, allocator)) return FALSE;
              /* Already merged */
              need_to_merge = FALSE;
            } else {
              /* Zero copy the message */
              need_to_merge = TRUE;
            }
          }
          break;
        }
        case PROTOBUF_C_TYPE_BYTES: {
          uint8_t *e_data = ((ProtobufCBinaryData *)earlier_elem)->data;
          uint8_t *l_data = ((ProtobufCBinaryData *)latter_elem)->data;
          const ProtobufCBinaryData *d_bd = (ProtobufCBinaryData *)def_val;

          need_to_merge =
              (e_data != NULL && (d_bd == NULL || e_data != d_bd->data)) &&
              (l_data == NULL || (d_bd != NULL && l_data == d_bd->data));
          break;
        }
        case PROTOBUF_C_TYPE_STRING: {
          char *e_str = *(char **)earlier_elem;
          char *l_str = *(char **)latter_elem;
          const char *d_str = def_val;

          need_to_merge = e_str != d_str && l_str == d_str;
          break;
        }
        default: {
          /* Could be has field or case enum, the logic is
           * equivalent, since 0 (FALSE) means not set for
           * oneof */
          need_to_merge = (*earlier_case_p != 0) && (*latter_case_p == 0);
          break;
        }
      }

      if (need_to_merge) {
        size_t el_size = sizeof_elt_in_repeated_array(field->type);
        memcpy(latter_elem, earlier_elem, el_size);
        /*
         * Reset the element from the old message to 0
         * to make sure earlier message deallocation
         * doesn't corrupt zero-copied data in the new
         * message, earlier message will be freed after
         * this function is called anyway
         */
        memset(earlier_elem, 0, el_size);

        if (field->quantifier_offset != 0) {
          /* Set the has field or the case enum,
           * if applicable */
          *latter_case_p = *earlier_case_p;
          *earlier_case_p = 0;
        }
      }
    }
  }
  return TRUE;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

/**
 * Count packed elements.
 *
 * Given a raw slab of packed-repeated values, determine the number of
 * elements. This function detects certain kinds of errors but not
 * others; the remaining error checking is done by
 * parse_packed_repeated_member().
 */
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static protobuf_c_boolean count_packed_elements(ProtobufCType type, size_t len,
                                                const uint8_t *data,
                                                size_t *count_out) {
  switch (type) {
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
    case PROTOBUF_C_TYPE_FLOAT:
      if (len % 4 != 0) {
        PROTOBUF_C_UNPACK_ERROR(
            "length must be a multiple of 4 for fixed-length 32-bit types");
        return FALSE;
      }
      *count_out = len / 4;
      return TRUE;
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
    case PROTOBUF_C_TYPE_DOUBLE:
      if (len % 8 != 0) {
        PROTOBUF_C_UNPACK_ERROR(
            "length must be a multiple of 8 for fixed-length 64-bit types");
        return FALSE;
      }
      *count_out = len / 8;
      return TRUE;
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_INT32:
    case PROTOBUF_C_TYPE_SINT32:
    case PROTOBUF_C_TYPE_UINT32:
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_SINT64:
    case PROTOBUF_C_TYPE_UINT64:
      *count_out = max_b128_numbers(len, data);
      return TRUE;
    case PROTOBUF_C_TYPE_BOOL:
      *count_out = len;
      return TRUE;
    case PROTOBUF_C_TYPE_STRING:
    case PROTOBUF_C_TYPE_BYTES:
    case PROTOBUF_C_TYPE_MESSAGE:
    default:
      PROTOBUF_C_UNPACK_ERROR("bad protobuf-c type %u for packed-repeated",
                              type);
      return FALSE;
  }
}

static inline uint32_t parse_uint32(unsigned len, const uint8_t *data) {
  uint32_t rv = data[0] & 0x7f;
  if (len > 1) {
    rv |= ((uint32_t)(data[1] & 0x7f) << 7);
    if (len > 2) {
      rv |= ((uint32_t)(data[2] & 0x7f) << 14);
      if (len > 3) {
        rv |= ((uint32_t)(data[3] & 0x7f) << 21);
        if (len > 4) rv |= ((uint32_t)(data[4]) << 28);
      }
    }
  }
  return rv;
}

static inline uint32_t parse_int32(unsigned len, const uint8_t *data) {
  return parse_uint32(len, data);
}

static inline int32_t unzigzag32(uint32_t v) {
  if (v & 1)
    return -(v >> 1) - 1;
  else
    return v >> 1;
}

static inline uint32_t parse_fixed_uint32(const uint8_t *data) {
1174
#if !defined(WORDS_BIGENDIAN)
1175 1176 1177
  uint32_t t;
  memcpy(&t, data, 4);
  return t;
1178
#else
1179 1180
  return data[0] | ((uint32_t)(data[1]) << 8) | ((uint32_t)(data[2]) << 16) |
         ((uint32_t)(data[3]) << 24);
1181 1182 1183
#endif
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static uint64_t parse_uint64(unsigned len, const uint8_t *data) {
  unsigned shift, i;
  uint64_t rv;

  if (len < 5) return parse_uint32(len, data);
  rv = ((uint64_t)(data[0] & 0x7f)) | ((uint64_t)(data[1] & 0x7f) << 7) |
       ((uint64_t)(data[2] & 0x7f) << 14) | ((uint64_t)(data[3] & 0x7f) << 21);
  shift = 28;
  for (i = 4; i < len; i++) {
    rv |= (((uint64_t)(data[i] & 0x7f)) << shift);
    shift += 7;
  }
  return rv;
}

static inline int64_t unzigzag64(uint64_t v) {
  if (v & 1)
    return -(v >> 1) - 1;
  else
    return v >> 1;
}

static inline uint64_t parse_fixed_uint64(const uint8_t *data) {
1207
#if !defined(WORDS_BIGENDIAN)
1208 1209 1210
  uint64_t t;
  memcpy(&t, data, 8);
  return t;
1211
#else
1212 1213
  return (uint64_t)parse_fixed_uint32(data) |
         (((uint64_t)parse_fixed_uint32(data + 4)) << 32);
1214 1215 1216
#endif
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static protobuf_c_boolean parse_boolean(unsigned len, const uint8_t *data) {
  unsigned i;
  for (i = 0; i < len; i++)
    if (data[i] & 0x7f) return TRUE;
  return FALSE;
}

static protobuf_c_boolean parse_required_member(
    ScannedMember *scanned_member, void *member, ProtobufCAllocator *allocator,
    protobuf_c_boolean maybe_clear) {
  unsigned len = scanned_member->len;
  const uint8_t *data = scanned_member->data;
  ProtobufCWireType wire_type = scanned_member->wire_type;

  switch (scanned_member->field->type) {
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_INT32:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
      *(int32_t *)member = parse_int32(len, data);
      return TRUE;
    case PROTOBUF_C_TYPE_UINT32:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
      *(uint32_t *)member = parse_uint32(len, data);
      return TRUE;
    case PROTOBUF_C_TYPE_SINT32:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
      *(int32_t *)member = unzigzag32(parse_uint32(len, data));
      return TRUE;
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
    case PROTOBUF_C_TYPE_FLOAT:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_32BIT) return FALSE;
      *(uint32_t *)member = parse_fixed_uint32(data);
      return TRUE;
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
      *(uint64_t *)member = parse_uint64(len, data);
      return TRUE;
    case PROTOBUF_C_TYPE_SINT64:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_VARINT) return FALSE;
      *(int64_t *)member = unzigzag64(parse_uint64(len, data));
      return TRUE;
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
    case PROTOBUF_C_TYPE_DOUBLE:
      if (wire_type != PROTOBUF_C_WIRE_TYPE_64BIT) return FALSE;
      *(uint64_t *)member = parse_fixed_uint64(data);
      return TRUE;
    case PROTOBUF_C_TYPE_BOOL:
      *(protobuf_c_boolean *)member = parse_boolean(len, data);
      return TRUE;
    case PROTOBUF_C_TYPE_STRING: {
      char **pstr = member;
      unsigned pref_len = scanned_member->length_prefix_len;

      if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;

      if (maybe_clear && *pstr != NULL) {
        const char *def = scanned_member->field->default_value;
        if (*pstr != NULL && *pstr != def) do_free(allocator, *pstr);
      }
      *pstr = do_alloc(allocator, len - pref_len + 1);
      if (*pstr == NULL) return FALSE;
      memcpy(*pstr, data + pref_len, len - pref_len);
      (*pstr)[len - pref_len] = 0;
      return TRUE;
    }
    case PROTOBUF_C_TYPE_BYTES: {
      ProtobufCBinaryData *bd = member;
      const ProtobufCBinaryData *def_bd;
      unsigned pref_len = scanned_member->length_prefix_len;

      if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;

      def_bd = scanned_member->field->default_value;
      if (maybe_clear && bd->data != NULL &&
          (def_bd == NULL || bd->data != def_bd->data)) {
        do_free(allocator, bd->data);
      }
      if (len - pref_len > 0) {
        bd->data = do_alloc(allocator, len - pref_len);
        if (bd->data == NULL) return FALSE;
        memcpy(bd->data, data + pref_len, len - pref_len);
      } else {
        bd->data = NULL;
      }
      bd->len = len - pref_len;
      return TRUE;
    }
    case PROTOBUF_C_TYPE_MESSAGE: {
      ProtobufCMessage **pmessage = member;
      ProtobufCMessage *subm;
      const ProtobufCMessage *def_mess;
      protobuf_c_boolean merge_successful = TRUE;
      unsigned pref_len = scanned_member->length_prefix_len;

      if (wire_type != PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED) return FALSE;

      def_mess = scanned_member->field->default_value;
      subm =
          protobuf_c_message_unpack(scanned_member->field->descriptor,
                                    allocator, len - pref_len, data + pref_len);

      if (maybe_clear && *pmessage != NULL && *pmessage != def_mess) {
        if (subm != NULL)
          merge_successful = merge_messages(*pmessage, subm, allocator);
        /* Delete the previous message */
        protobuf_c_message_free_unpacked(*pmessage, allocator);
      }
      *pmessage = subm;
      if (subm == NULL || !merge_successful) return FALSE;
      return TRUE;
    }
  }
  return FALSE;
}

static protobuf_c_boolean parse_oneof_member(ScannedMember *scanned_member,
                                             void *member,
                                             ProtobufCMessage *message,
                                             ProtobufCAllocator *allocator) {
  uint32_t *oneof_case = STRUCT_MEMBER_PTR(
      uint32_t, message, scanned_member->field->quantifier_offset);

  /* If we have already parsed a member of this oneof, free it. */
  if (*oneof_case != 0) {
    /* lookup field */
    int field_index =
        int_range_lookup(message->descriptor->n_field_ranges,
                         message->descriptor->field_ranges, *oneof_case);
    const ProtobufCFieldDescriptor *old_field =
        message->descriptor->fields + field_index;
    size_t el_size = sizeof_elt_in_repeated_array(old_field->type);

    switch (old_field->type) {
      case PROTOBUF_C_TYPE_STRING: {
        char **pstr = member;
        const char *def = old_field->default_value;
        if (*pstr != NULL && *pstr != def) do_free(allocator, *pstr);
        break;
      }
      case PROTOBUF_C_TYPE_BYTES: {
        ProtobufCBinaryData *bd = member;
        const ProtobufCBinaryData *def_bd = old_field->default_value;
        if (bd->data != NULL && (def_bd == NULL || bd->data != def_bd->data)) {
          do_free(allocator, bd->data);
        }
        break;
      }
      case PROTOBUF_C_TYPE_MESSAGE: {
        ProtobufCMessage **pmessage = member;
        const ProtobufCMessage *def_mess = old_field->default_value;
        if (*pmessage != NULL && *pmessage != def_mess)
          protobuf_c_message_free_unpacked(*pmessage, allocator);
        break;
      }
      default:
        break;
    }

    memset(member, 0, el_size);
  }
  if (!parse_required_member(scanned_member, member, allocator, TRUE))
    return FALSE;

  *oneof_case = scanned_member->tag;
  return TRUE;
}

static protobuf_c_boolean parse_optional_member(ScannedMember *scanned_member,
                                                void *member,
                                                ProtobufCMessage *message,
                                                ProtobufCAllocator *allocator) {
  if (!parse_required_member(scanned_member, member, allocator, TRUE))
    return FALSE;
  if (scanned_member->field->quantifier_offset != 0)
    STRUCT_MEMBER(protobuf_c_boolean, message,
                  scanned_member->field->quantifier_offset) = TRUE;
  return TRUE;
}

static protobuf_c_boolean parse_repeated_member(ScannedMember *scanned_member,
                                                void *member,
                                                ProtobufCMessage *message,
                                                ProtobufCAllocator *allocator) {
  const ProtobufCFieldDescriptor *field = scanned_member->field;
  size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
  size_t siz = sizeof_elt_in_repeated_array(field->type);
  char *array = *(char **)member;

  if (!parse_required_member(scanned_member, array + siz * (*p_n), allocator,
                             FALSE)) {
    return FALSE;
  }
  *p_n += 1;
  return TRUE;
}

static unsigned scan_varint(unsigned len, const uint8_t *data) {
  unsigned i;
  if (len > 10) len = 10;
  for (i = 0; i < len; i++)
    if ((data[i] & 0x80) == 0) break;
  if (i == len) return 0;
  return i + 1;
}

static protobuf_c_boolean parse_packed_repeated_member(
    ScannedMember *scanned_member, void *member, ProtobufCMessage *message) {
  const ProtobufCFieldDescriptor *field = scanned_member->field;
  size_t *p_n = STRUCT_MEMBER_PTR(size_t, message, field->quantifier_offset);
  size_t siz = sizeof_elt_in_repeated_array(field->type);
  void *array = *(char **)member + siz * (*p_n);
  const uint8_t *at = scanned_member->data + scanned_member->length_prefix_len;
  size_t rem = scanned_member->len - scanned_member->length_prefix_len;
  size_t count = 0;
  unsigned i;

  switch (field->type) {
    case PROTOBUF_C_TYPE_SFIXED32:
    case PROTOBUF_C_TYPE_FIXED32:
    case PROTOBUF_C_TYPE_FLOAT:
      count = (scanned_member->len - scanned_member->length_prefix_len) / 4;
1441
#if !defined(WORDS_BIGENDIAN)
1442
      goto no_unpacking_needed;
1443
#else
1444 1445 1446 1447 1448
      for (i = 0; i < count; i++) {
        ((uint32_t *)array)[i] = parse_fixed_uint32(at);
        at += 4;
      }
      break;
1449
#endif
1450 1451 1452 1453
    case PROTOBUF_C_TYPE_SFIXED64:
    case PROTOBUF_C_TYPE_FIXED64:
    case PROTOBUF_C_TYPE_DOUBLE:
      count = (scanned_member->len - scanned_member->length_prefix_len) / 8;
1454
#if !defined(WORDS_BIGENDIAN)
1455
      goto no_unpacking_needed;
1456
#else
1457 1458 1459 1460 1461
      for (i = 0; i < count; i++) {
        ((uint64_t *)array)[i] = parse_fixed_uint64(at);
        at += 8;
      }
      break;
1462
#endif
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    case PROTOBUF_C_TYPE_ENUM:
    case PROTOBUF_C_TYPE_INT32:
      while (rem > 0) {
        unsigned s = scan_varint(rem, at);
        if (s == 0) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int32 value");
          return FALSE;
        }
        ((int32_t *)array)[count++] = parse_int32(s, at);
        at += s;
        rem -= s;
      }
      break;
    case PROTOBUF_C_TYPE_SINT32:
      while (rem > 0) {
        unsigned s = scan_varint(rem, at);
        if (s == 0) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint32 value");
          return FALSE;
        }
        ((int32_t *)array)[count++] = unzigzag32(parse_uint32(s, at));
        at += s;
        rem -= s;
      }
      break;
    case PROTOBUF_C_TYPE_UINT32:
      while (rem > 0) {
        unsigned s = scan_varint(rem, at);
        if (s == 0) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated enum or uint32 value");
          return FALSE;
        }
        ((uint32_t *)array)[count++] = parse_uint32(s, at);
        at += s;
        rem -= s;
      }
      break;

    case PROTOBUF_C_TYPE_SINT64:
      while (rem > 0) {
        unsigned s = scan_varint(rem, at);
        if (s == 0) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated sint64 value");
          return FALSE;
        }
        ((int64_t *)array)[count++] = unzigzag64(parse_uint64(s, at));
        at += s;
        rem -= s;
      }
      break;
    case PROTOBUF_C_TYPE_INT64:
    case PROTOBUF_C_TYPE_UINT64:
      while (rem > 0) {
        unsigned s = scan_varint(rem, at);
        if (s == 0) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated int64/uint64 value");
          return FALSE;
        }
        ((int64_t *)array)[count++] = parse_uint64(s, at);
        at += s;
        rem -= s;
      }
      break;
    case PROTOBUF_C_TYPE_BOOL:
      count = rem;
      for (i = 0; i < count; i++) {
        if (at[i] > 1) {
          PROTOBUF_C_UNPACK_ERROR("bad packed-repeated boolean value");
          return FALSE;
        }
        ((protobuf_c_boolean *)array)[i] = at[i];
      }
      break;
    default:
      PROTOBUF_C__ASSERT_NOT_REACHED();
  }
  *p_n += count;
  return TRUE;
1541 1542 1543

#if !defined(WORDS_BIGENDIAN)
no_unpacking_needed:
1544 1545 1546
  memcpy(array, at, count * siz);
  *p_n += count;
  return TRUE;
1547 1548 1549
#endif
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static protobuf_c_boolean is_packable_type(ProtobufCType type) {
  return type != PROTOBUF_C_TYPE_STRING && type != PROTOBUF_C_TYPE_BYTES &&
         type != PROTOBUF_C_TYPE_MESSAGE;
}

static protobuf_c_boolean parse_member(ScannedMember *scanned_member,
                                       ProtobufCMessage *message,
                                       ProtobufCAllocator *allocator) {
  const ProtobufCFieldDescriptor *field = scanned_member->field;
  void *member;

  if (field == NULL) {
    ProtobufCMessageUnknownField *ufield =
        message->unknown_fields + (message->n_unknown_fields++);
    ufield->tag = scanned_member->tag;
    ufield->wire_type = scanned_member->wire_type;
    ufield->len = scanned_member->len;
    ufield->data = do_alloc(allocator, scanned_member->len);
    if (ufield->data == NULL) return FALSE;
    memcpy(ufield->data, scanned_member->data, ufield->len);
    return TRUE;
  }
  member = (char *)message + field->offset;
  switch (field->label) {
    case PROTOBUF_C_LABEL_REQUIRED:
      return parse_required_member(scanned_member, member, allocator, TRUE);
    case PROTOBUF_C_LABEL_OPTIONAL:
    case PROTOBUF_C_LABEL_NONE:
      if (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_ONEOF)) {
        return parse_oneof_member(scanned_member, member, message, allocator);
      } else {
        return parse_optional_member(scanned_member, member, message,
                                     allocator);
      }
    case PROTOBUF_C_LABEL_REPEATED:
      if (scanned_member->wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
          (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
           is_packable_type(field->type))) {
        return parse_packed_repeated_member(scanned_member, member, message);
      } else {
        return parse_repeated_member(scanned_member, member, message,
                                     allocator);
      }
  }
  PROTOBUF_C__ASSERT_NOT_REACHED();
  return 0;
1596 1597 1598 1599 1600 1601 1602 1603 1604
}

/**
 * Initialise messages generated by old code.
 *
 * This function is used if desc->message_init == NULL (which occurs
 * for old code, and which would be useful to support allocating
 * descriptors dynamically).
 */
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static void message_init_generic(const ProtobufCMessageDescriptor *desc,
                                 ProtobufCMessage *message) {
  unsigned i;

  memset(message, 0, desc->sizeof_message);
  message->descriptor = desc;
  for (i = 0; i < desc->n_fields; i++) {
    if (desc->fields[i].default_value != NULL &&
        desc->fields[i].label != PROTOBUF_C_LABEL_REPEATED) {
      void *field = STRUCT_MEMBER_P(message, desc->fields[i].offset);
      const void *dv = desc->fields[i].default_value;

      switch (desc->fields[i].type) {
        case PROTOBUF_C_TYPE_INT32:
        case PROTOBUF_C_TYPE_SINT32:
        case PROTOBUF_C_TYPE_SFIXED32:
        case PROTOBUF_C_TYPE_UINT32:
        case PROTOBUF_C_TYPE_FIXED32:
        case PROTOBUF_C_TYPE_FLOAT:
        case PROTOBUF_C_TYPE_ENUM:
          memcpy(field, dv, 4);
          break;
        case PROTOBUF_C_TYPE_INT64:
        case PROTOBUF_C_TYPE_SINT64:
        case PROTOBUF_C_TYPE_SFIXED64:
        case PROTOBUF_C_TYPE_UINT64:
        case PROTOBUF_C_TYPE_FIXED64:
        case PROTOBUF_C_TYPE_DOUBLE:
          memcpy(field, dv, 8);
          break;
        case PROTOBUF_C_TYPE_BOOL:
          memcpy(field, dv, sizeof(protobuf_c_boolean));
          break;
        case PROTOBUF_C_TYPE_BYTES:
          memcpy(field, dv, sizeof(ProtobufCBinaryData));
          break;

        case PROTOBUF_C_TYPE_STRING:
        case PROTOBUF_C_TYPE_MESSAGE:
          /*
           * The next line essentially implements a cast
           * from const, which is totally unavoidable.
           */
          *(const void **)field = dv;
          break;
      }
    }
  }
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/**@}*/

/*
 * ScannedMember slabs (an unpacking implementation detail). Before doing real
 * unpacking, we first scan through the elements to see how many there are (for
 * repeated fields), and which field to use (for non-repeated fields given
 * twice).
 *
 * In order to avoid allocations for small messages, we keep a stack-allocated
 * slab of ScannedMembers of size FIRST_SCANNED_MEMBER_SLAB_SIZE (16). After we
 * fill that up, we allocate each slab twice as large as the previous one.
 */
#define FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2 4

/*
 * The number of slabs, including the stack-allocated ones; choose the number so
 * that we would overflow if we needed a slab larger than provided.
 */
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
#define MAX_SCANNED_MEMBER_SLAB                                      \
  (sizeof(unsigned int) * 8 - 1 - BOUND_SIZEOF_SCANNED_MEMBER_LOG2 - \
   FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2)

#define REQUIRED_FIELD_BITMAP_SET(index) \
  (required_fields_bitmap[(index) / 8] |= (1UL << ((index) % 8)))

#define REQUIRED_FIELD_BITMAP_IS_SET(index) \
  (required_fields_bitmap[(index) / 8] & (1UL << ((index) % 8)))

ProtobufCMessage *protobuf_c_message_unpack(
    const ProtobufCMessageDescriptor *desc, ProtobufCAllocator *allocator,
    size_t len, const uint8_t *data) {
  ProtobufCMessage *rv;
  size_t rem = len;
  const uint8_t *at = data;
  const ProtobufCFieldDescriptor *last_field = desc->fields + 0;
  ScannedMember first_member_slab[1UL << FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2];

  /*
   * scanned_member_slabs[i] is an array of arrays of ScannedMember.
   * The first slab (scanned_member_slabs[0] is just a pointer to
   * first_member_slab), above. All subsequent slabs will be allocated
   * using the allocator.
   */
  ScannedMember *scanned_member_slabs[MAX_SCANNED_MEMBER_SLAB + 1];
  unsigned which_slab = 0;    /* the slab we are currently populating */
  unsigned in_slab_index = 0; /* number of members in the slab */
  size_t n_unknown = 0;
  unsigned f;
  unsigned j;
  unsigned i_slab;
  unsigned last_field_index = 0;
  unsigned required_fields_bitmap_len;
  unsigned char required_fields_bitmap_stack[16];
  unsigned char *required_fields_bitmap = required_fields_bitmap_stack;
  protobuf_c_boolean required_fields_bitmap_alloced = FALSE;

  ASSERT_IS_MESSAGE_DESCRIPTOR(desc);

  if (allocator == NULL) allocator = &protobuf_c__allocator;

  rv = do_alloc(allocator, desc->sizeof_message);
  if (!rv) return (NULL);
  scanned_member_slabs[0] = first_member_slab;

  required_fields_bitmap_len = (desc->n_fields + 7) / 8;
  if (required_fields_bitmap_len > sizeof(required_fields_bitmap_stack)) {
    required_fields_bitmap = do_alloc(allocator, required_fields_bitmap_len);
    if (!required_fields_bitmap) {
      do_free(allocator, rv);
      return (NULL);
    }
    required_fields_bitmap_alloced = TRUE;
  }
  memset(required_fields_bitmap, 0, required_fields_bitmap_len);

  /*
   * Generated code always defines "message_init". However, we provide a
   * fallback for (1) users of old protobuf-c generated-code that do not
   * provide the function, and (2) descriptors constructed from some other
   * source (most likely, direct construction from the .proto file).
   */
  if (desc->message_init != NULL)
    protobuf_c_message_init(desc, rv);
  else
    message_init_generic(desc, rv);

  while (rem > 0) {
    uint32_t tag;
    ProtobufCWireType wire_type;
    size_t used = parse_tag_and_wiretype(rem, at, &tag, &wire_type);
    const ProtobufCFieldDescriptor *field;
    ScannedMember tmp;

    if (used == 0) {
      PROTOBUF_C_UNPACK_ERROR("error parsing tag/wiretype at offset %u",
                              (unsigned)(at - data));
      goto error_cleanup_during_scan;
    }
    /*
     * \todo Consider optimizing for field[1].id == tag, if field[1]
     * exists!
     */
    if (last_field == NULL || last_field->id != tag) {
      /* lookup field */
      int field_index =
          int_range_lookup(desc->n_field_ranges, desc->field_ranges, tag);
      if (field_index < 0) {
        field = NULL;
        n_unknown++;
      } else {
        field = desc->fields + field_index;
        last_field = field;
        last_field_index = field_index;
      }
    } else {
      field = last_field;
    }

    if (field != NULL && field->label == PROTOBUF_C_LABEL_REQUIRED)
      REQUIRED_FIELD_BITMAP_SET(last_field_index);

    at += used;
    rem -= used;
    tmp.tag = tag;
    tmp.wire_type = wire_type;
    tmp.field = field;
    tmp.data = at;
    tmp.length_prefix_len = 0;

    switch (wire_type) {
      case PROTOBUF_C_WIRE_TYPE_VARINT: {
        unsigned max_len = rem < 10 ? rem : 10;
        unsigned i;

        for (i = 0; i < max_len; i++)
          if ((at[i] & 0x80) == 0) break;
        if (i == max_len) {
          PROTOBUF_C_UNPACK_ERROR("unterminated varint at offset %u",
                                  (unsigned)(at - data));
          goto error_cleanup_during_scan;
        }
        tmp.len = i + 1;
        break;
      }
      case PROTOBUF_C_WIRE_TYPE_64BIT:
        if (rem < 8) {
          PROTOBUF_C_UNPACK_ERROR("too short after 64bit wiretype at offset %u",
                                  (unsigned)(at - data));
          goto error_cleanup_during_scan;
        }
        tmp.len = 8;
        break;
      case PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED: {
        size_t pref_len;

        tmp.len = scan_length_prefixed_data(rem, at, &pref_len);
        if (tmp.len == 0) {
          /* NOTE: scan_length_prefixed_data calls UNPACK_ERROR */
          goto error_cleanup_during_scan;
        }
        tmp.length_prefix_len = pref_len;
        break;
      }
      case PROTOBUF_C_WIRE_TYPE_32BIT:
        if (rem < 4) {
          PROTOBUF_C_UNPACK_ERROR("too short after 32bit wiretype at offset %u",
                                  (unsigned)(at - data));
          goto error_cleanup_during_scan;
        }
        tmp.len = 4;
        break;
      default:
        PROTOBUF_C_UNPACK_ERROR("unsupported tag %u at offset %u", wire_type,
                                (unsigned)(at - data));
        goto error_cleanup_during_scan;
    }

    if (in_slab_index ==
        (1UL << (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2))) {
      size_t size;

      in_slab_index = 0;
      if (which_slab == MAX_SCANNED_MEMBER_SLAB) {
        PROTOBUF_C_UNPACK_ERROR("too many fields");
        goto error_cleanup_during_scan;
      }
      which_slab++;
      size = sizeof(ScannedMember)
             << (which_slab + FIRST_SCANNED_MEMBER_SLAB_SIZE_LOG2);
      scanned_member_slabs[which_slab] = do_alloc(allocator, size);
      if (scanned_member_slabs[which_slab] == NULL)
        goto error_cleanup_during_scan;
    }
    scanned_member_slabs[which_slab][in_slab_index++] = tmp;

    if (field != NULL && field->label == PROTOBUF_C_LABEL_REPEATED) {
      size_t *n = STRUCT_MEMBER_PTR(size_t, rv, field->quantifier_offset);
      if (wire_type == PROTOBUF_C_WIRE_TYPE_LENGTH_PREFIXED &&
          (0 != (field->flags & PROTOBUF_C_FIELD_FLAG_PACKED) ||
           is_packable_type(field->type))) {
        size_t count;
        if (!count_packed_elements(field->type, tmp.len - tmp.length_prefix_len,
                                   tmp.data + tmp.length_prefix_len, &count)) {
          PROTOBUF_C_UNPACK_ERROR("counting packed elements");
          goto error_cleanup_during_scan;
        }
        *n += count;
      } else {
        *n += 1;
      }
    }

    at += tmp.len;
    rem -= tmp.len;
  }

  /* allocate space for repeated fields, also check that all required fields
   * have been set */
  for (f = 0; f < desc->n_fields; f++) {
    const ProtobufCFieldDescriptor *field = desc->fields + f;
    if (field->label == PROTOBUF_C_LABEL_REPEATED) {
      size_t siz = sizeof_elt_in_repeated_array(field->type);
      size_t *n_ptr = STRUCT_MEMBER_PTR(size_t, rv, field->quantifier_offset);
      if (*n_ptr != 0) {
        unsigned n = *n_ptr;
        void *a;
        *n_ptr = 0;
        assert(rv->descriptor != NULL);
#define CLEAR_REMAINING_N_PTRS()                               \
  for (f++; f < desc->n_fields; f++) {                         \
    field = desc->fields + f;                                  \
    if (field->label == PROTOBUF_C_LABEL_REPEATED)             \
      STRUCT_MEMBER(size_t, rv, field->quantifier_offset) = 0; \
  }
        a = do_alloc(allocator, siz * n);
        if (!a) {
          CLEAR_REMAINING_N_PTRS();
          goto error_cleanup;
        }
        STRUCT_MEMBER(void *, rv, field->offset) = a;
      }
    } else if (field->label == PROTOBUF_C_LABEL_REQUIRED) {
      if (field->default_value == NULL && !REQUIRED_FIELD_BITMAP_IS_SET(f)) {
        CLEAR_REMAINING_N_PTRS();
        PROTOBUF_C_UNPACK_ERROR("message '%s': missing required field '%s'",
                                desc->name, field->name);
        goto error_cleanup;
      }
    }
  }
1905 1906
#undef CLEAR_REMAINING_N_PTRS

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
  /* allocate space for unknown fields */
  if (n_unknown) {
    rv->unknown_fields =
        do_alloc(allocator, n_unknown * sizeof(ProtobufCMessageUnknownField));
    if (rv->unknown_fields == NULL) goto error_cleanup;
  }

  /* do real parsing */
  for (i_slab = 0; i_slab <= which_slab; i_slab++) {
    unsigned max =
        (i_slab == which_slab) ? in_slab_index : (1UL << (i_slab + 4));
    ScannedMember *slab = scanned_member_slabs[i_slab];

    for (j = 0; j < max; j++) {
      if (!parse_member(slab + j, rv, allocator)) {
        PROTOBUF_C_UNPACK_ERROR(
            "error parsing member %s of %s",
            slab->field ? slab->field->name : "*unknown-field*", desc->name);
        goto error_cleanup;
      }
    }
  }

  /* cleanup */
  for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
  if (required_fields_bitmap_alloced)
    do_free(allocator, required_fields_bitmap);
  return rv;
1935 1936

error_cleanup:
1937 1938 1939 1940 1941
  protobuf_c_message_free_unpacked(rv, allocator);
  for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
  if (required_fields_bitmap_alloced)
    do_free(allocator, required_fields_bitmap);
  return NULL;
1942 1943

error_cleanup_during_scan:
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
  do_free(allocator, rv);
  for (j = 1; j <= which_slab; j++) do_free(allocator, scanned_member_slabs[j]);
  if (required_fields_bitmap_alloced)
    do_free(allocator, required_fields_bitmap);
  return NULL;
}

void protobuf_c_message_free_unpacked(ProtobufCMessage *message,
                                      ProtobufCAllocator *allocator) {
  const ProtobufCMessageDescriptor *desc;
  unsigned f;

  if (message == NULL) return;

  desc = message->descriptor;

  ASSERT_IS_MESSAGE(message);

  if (allocator == NULL) allocator = &protobuf_c__allocator;
  message->descriptor = NULL;
  for (f = 0; f < desc->n_fields; f++) {
    if (0 != (desc->fields[f].flags & PROTOBUF_C_FIELD_FLAG_ONEOF) &&
        desc->fields[f].id !=
            STRUCT_MEMBER(uint32_t, message,
                          desc->fields[f].quantifier_offset)) {
      /* This is not the selected oneof, skip it */
      continue;
    }

    if (desc->fields[f].label == PROTOBUF_C_LABEL_REPEATED) {
      size_t n =
          STRUCT_MEMBER(size_t, message, desc->fields[f].quantifier_offset);
      void *arr = STRUCT_MEMBER(void *, message, desc->fields[f].offset);

      if (arr != NULL) {
        if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
          unsigned i;
          for (i = 0; i < n; i++) do_free(allocator, ((char **)arr)[i]);
        } else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
          unsigned i;
          for (i = 0; i < n; i++)
            do_free(allocator, ((ProtobufCBinaryData *)arr)[i].data);
        } else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
          unsigned i;
          for (i = 0; i < n; i++)
            protobuf_c_message_free_unpacked(((ProtobufCMessage **)arr)[i],
                                             allocator);
        }
        do_free(allocator, arr);
      }
    } else if (desc->fields[f].type == PROTOBUF_C_TYPE_STRING) {
      char *str = STRUCT_MEMBER(char *, message, desc->fields[f].offset);

      if (str && str != desc->fields[f].default_value) do_free(allocator, str);
    } else if (desc->fields[f].type == PROTOBUF_C_TYPE_BYTES) {
      void *data =
          STRUCT_MEMBER(ProtobufCBinaryData, message, desc->fields[f].offset)
              .data;
      const ProtobufCBinaryData *default_bd;

      default_bd = desc->fields[f].default_value;
      if (data != NULL && (default_bd == NULL || default_bd->data != data)) {
        do_free(allocator, data);
      }
    } else if (desc->fields[f].type == PROTOBUF_C_TYPE_MESSAGE) {
      ProtobufCMessage *sm;

      sm = STRUCT_MEMBER(ProtobufCMessage *, message, desc->fields[f].offset);
      if (sm && sm != desc->fields[f].default_value)
        protobuf_c_message_free_unpacked(sm, allocator);
    }
  }

  for (f = 0; f < message->n_unknown_fields; f++)
    do_free(allocator, message->unknown_fields[f].data);
  if (message->unknown_fields != NULL)
    do_free(allocator, message->unknown_fields);

  do_free(allocator, message);
}

void protobuf_c_message_init(const ProtobufCMessageDescriptor *descriptor,
                             void *message) {
  descriptor->message_init((ProtobufCMessage *)(message));
}

protobuf_c_boolean protobuf_c_message_check(const ProtobufCMessage *message) {
  unsigned i;

  if (!message || !message->descriptor ||
      message->descriptor->magic != PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC) {
    return FALSE;
  }

  for (i = 0; i < message->descriptor->n_fields; i++) {
    const ProtobufCFieldDescriptor *f = message->descriptor->fields + i;
    ProtobufCType type = f->type;
    ProtobufCLabel label = f->label;
    void *field = STRUCT_MEMBER_P(message, f->offset);

    if (label == PROTOBUF_C_LABEL_REPEATED) {
      size_t *quantity = STRUCT_MEMBER_P(message, f->quantifier_offset);

      if (*quantity > 0 && *(void **)field == NULL) {
        return FALSE;
      }

      if (type == PROTOBUF_C_TYPE_MESSAGE) {
        ProtobufCMessage **submessage = *(ProtobufCMessage ***)field;
        unsigned j;
        for (j = 0; j < *quantity; j++) {
          if (!protobuf_c_message_check(submessage[j])) return FALSE;
        }
      } else if (type == PROTOBUF_C_TYPE_STRING) {
        char **string = *(char ***)field;
        unsigned j;
        for (j = 0; j < *quantity; j++) {
          if (!string[j]) return FALSE;
        }
      } else if (type == PROTOBUF_C_TYPE_BYTES) {
        ProtobufCBinaryData *bd = *(ProtobufCBinaryData **)field;
        unsigned j;
        for (j = 0; j < *quantity; j++) {
          if (bd[j].len > 0 && bd[j].data == NULL) return FALSE;
        }
      }

    } else { /* PROTOBUF_C_LABEL_REQUIRED or PROTOBUF_C_LABEL_OPTIONAL */

      if (type == PROTOBUF_C_TYPE_MESSAGE) {
        ProtobufCMessage *submessage = *(ProtobufCMessage **)field;
        if (label == PROTOBUF_C_LABEL_REQUIRED || submessage != NULL) {
          if (!protobuf_c_message_check(submessage)) return FALSE;
        }
      } else if (type == PROTOBUF_C_TYPE_STRING) {
        char *string = *(char **)field;
        if (label == PROTOBUF_C_LABEL_REQUIRED && string == NULL) return FALSE;
      } else if (type == PROTOBUF_C_TYPE_BYTES) {
        protobuf_c_boolean *has =
            STRUCT_MEMBER_P(message, f->quantifier_offset);
        ProtobufCBinaryData *bd = field;
        if (label == PROTOBUF_C_LABEL_REQUIRED || *has == TRUE) {
          if (bd->len > 0 && bd->data == NULL) return FALSE;
        }
      }
    }
  }

  return TRUE;
2093 2094 2095 2096
}

/* === services === */

2097 2098
typedef void (*GenericHandler)(void *service, const ProtobufCMessage *input,
                               ProtobufCClosure closure, void *closure_data);