feed_compute.cc 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/fpga/feed_compute.h"
16

17
#include "lite/backends/fpga/KD/debugger.hpp"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void FeedCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  Tensor& x = param.feed_list->at(param.col);
  param.out->Resize(x.dims());
32 33 34 35 36 37 38 39

  auto in_type = x.ZynqTensor()->dataType();
  if (in_type == zynqmp::FP32 || in_type == zynqmp::FP16) {
    param.out->mutable_data<float16>();
  }
  if (in_type == zynqmp::INT32) {
    param.out->mutable_data<int32_t>();
  }
40 41 42 43
  // ====================================================
  zynqmp::InputParam& feed_param = pe_.param();
  feed_param.input = x.ZynqTensor();
  feed_param.output = param.out->ZynqTensor();
Y
Yan Chunwei 已提交
44 45 46 47 48 49
  pe_.init();
  pe_.apply();
}

void FeedCompute::Run() {
  auto& param = this->Param<param_t>();
50
  Tensor& x = param.feed_list->at(param.col);
51
  pe_.param().input = x.ZynqTensor();
Y
Yan Chunwei 已提交
52
  pe_.dispatch();
53 54 55 56 57 58 59
  auto out_lod = param.out->mutable_lod();
  *out_lod = x.lod();

#ifdef FPGA_PRINT_TENSOR
  zynqmp::InputParam& feed_param = pe_.param();
  Debugger::get_instance().registerOutput("feed", feed_param.output);
#endif
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67 68 69
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    feed, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::FeedCompute, def)
    .BindInput("X",
70
               {LiteType::GetTensorTy(TARGET(kHost),
Y
Yan Chunwei 已提交
71
                                      PRECISION(kFloat),
72
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
73 74 75 76 77
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();
78 79 80 81 82 83

REGISTER_LITE_KERNEL(feed,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::FeedCompute,
84 85 86 87 88 89 90 91 92
                     feed_int32)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kHost),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kAny))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kInt32),
                                       DATALAYOUT(kNCHW))})
93
    .Finalize();