mul_op.cc 3.3 KB
Newer Older
Z
zhupengyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
Z
zhupengyang 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Z
zhupengyang 已提交
22 23
namespace xpu {

24
int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
Z
zhupengyang 已提交
28 29
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";
Z
zhupengyang 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto y_name = op_info->Input("Y").front();
  auto y_type = kernel->GetInputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
  auto y = scope->FindMutableTensor(y_name);
45
  auto y_dims = y->dims();
46 47 48 49 50 51
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
  auto out = scope->FindMutableTensor(out_name);
  auto out_dims = out->dims();
Z
zhupengyang 已提交
52
  auto x_num_col_dims = op_info->GetAttr<int>("x_num_col_dims");
53 54 55 56
  auto x_matrix_dims = x_dims.Flatten2D(x_num_col_dims);
  auto y_num_col_dims = op_info->GetAttr<int>("y_num_col_dims");
  auto y_matrix_dims = y_dims.Flatten2D(y_num_col_dims);
  CHECK_EQ(x_matrix_dims[1], y_matrix_dims[0]);
Z
zhupengyang 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70
  // X node
  std::shared_ptr<xtcl::xExpr> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }
  // Flatten X node
  if (x_dims.size() != 2) {
    x_node =
        graph->AddNode(x_name + "/reshape",
                       graph->builder_.CreateReshape(
                           *x_node, {-1, static_cast<int>(y_matrix_dims[0])}));
Z
zhupengyang 已提交
71 72
  }

73 74 75 76 77 78 79 80 81 82 83
  // Y node
  auto y_const_node = graph->AddNode(y_name, *y, y_matrix_dims);

  // Reshape the matmul node with the inferred shape as the output node
  auto matmul_node = graph->AddNode(
      out_name, graph->builder_.CreateMatmul2D(*x_node, *y_const_node, false));
  if (out_dims.size() != 2) {
    graph->AddNode(out_name,
                   graph->builder_.CreateReshape(
                       *matmul_node, CvtShape<xtcl::Integer>(out_dims)));
  }
84
  return REBUILD_WHEN_SHAPE_CHANGED;
Z
zhupengyang 已提交
85 86 87
}

}  // namespace xpu
88
}  // namespace subgraph
Z
zhupengyang 已提交
89 90 91
}  // namespace lite
}  // namespace paddle

92
REGISTER_SUBGRAPH_BRIDGE(XPU, mul, paddle::lite::subgraph::xpu::MulConverter);