optimizer.h 10.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19
#include <string>
20
#include <utility>
Y
Yan Chunwei 已提交
21 22 23
#include <vector>
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
24
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
class Optimizer {
 public:
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  Optimizer() {}

  Optimizer(Program&& program, const std::vector<Place>& valid_places) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";

    core::KernelPickFactor factor;
    factor.ConsiderTarget();
    factor.ConsiderPrecision();
    factor.ConsiderDataLayout();

    Run(std::move(program), valid_places, factor, {});
  }

Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
    CHECK(!graph_) << "duplicate optimize found";
64

Y
Yan Chunwei 已提交
65 66 67 68 69 70 71
    graph_.reset(new mir::SSAGraph);
    graph_->Build(program, valid_places);
    graph_->SetValidPlaces(valid_places);

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();

72
    if (passes.empty() || passes.size() == 1) {
73
      std::vector<std::string> passes_local{
J
juncaipeng 已提交
74 75 76 77 78
          {"lite_quant_dequant_fuse_pass",         //
           "weight_quantization_preprocess_pass",  //
           "lite_conv_elementwise_fuse_pass",      // conv-elemwise-bn
           "lite_conv_bn_fuse_pass",               //
           "lite_conv_elementwise_fuse_pass",      // conv-bn-elemwise
Y
Yan Chunwei 已提交
79 80
           // TODO(Superjomn) Refine the fusion related design to select fusion
           // kernels for devices automatically.
81
           "lite_conv_activation_fuse_pass",              //
82
           "lite_var_conv_2d_activation_fuse_pass",       //
83 84 85
           "lite_fc_fuse_pass",                           //
           "lite_shuffle_channel_fuse_pass",              //
           "lite_transpose_softmax_transpose_fuse_pass",  //
Z
zhupengyang 已提交
86
           "lite_interpolate_fuse_pass",                  //
87
           "identity_scale_eliminate_pass",               //
H
HappyAngel 已提交
88
           "elementwise_mul_constant_eliminate_pass",     //
89
           "lite_sequence_pool_concat_fuse_pass",         //
90
           "lite_scale_activation_fuse_pass",             //
H
HappyAngel 已提交
91 92
#if (defined LITE_WITH_LIGHT_WEIGHT_FRAMEWORK) || (defined LITE_WITH_CUDA) || \
    (defined LITE_WITH_ARM)
93
           "lite_elementwise_activation_fuse_pass",  //
Y
Yan Chunwei 已提交
94
#endif
95
           "identity_dropout_eliminate_pass",
96 97
           "__xpu__resnet_fuse_pass",
           "__xpu__multi_encoder_fuse_pass",
C
Cwndmiao 已提交
98 99
           "__xpu__embedding_with_eltwise_add_fuse_pass",
           "__xpu__fc_fuse_pass",
100 101 102 103 104 105
           "quantized_op_attributes_inference_pass",  // Only for fully
                                                      // quantized model, infer
                                                      // the output scale and
                                                      // fix the attribute
                                                      // 'enable_int8' for all
                                                      // of the quantized ops.
106 107 108
           "npu_subgraph_pass",
           "xpu_subgraph_pass",
           "bm_subgraph_pass",
H
hong19860320 已提交
109
           "apu_subgraph_pass",
110
           "rknpu_subgraph_pass",
111
           "mlu_subgraph_pass",
112
           "static_kernel_pick_pass",  // pick original kernel from graph
113

114
           "remove_tf_redundant_ops_pass",
115
           "variable_place_inference_pass",  // inference arg/var's
116 117

           "mlu_postprocess_pass",
118 119 120 121 122
           // info(target/precision/layout/device)
           // using kernel info
           "argument_type_display_pass",  // debug pass: show arg-type-node's
                                          // info
                                          // (target/precision/layout/device)
Y
Yan Chunwei 已提交
123

124 125 126
           "type_target_cast_pass",  // add io_copy/io_copy_once if meet
                                     // different targets when last and next
                                     // node
Y
Yan Chunwei 已提交
127 128 129
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

130 131 132
           "io_copy_kernel_pick_pass",    //
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
133 134 135 136 137 138 139
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_precision_cast_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

140 141 142 143
           "type_layout_cast_pass",  // add layout/layout_once op if meet
                                     // different layout when last and next node
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
144
           "variable_place_inference_pass",  //
145
           "argument_type_display_pass",
Y
Yan Chunwei 已提交
146 147

           "runtime_context_assign_pass",
148
           "argument_type_display_pass",
149

150
           "memory_optimize_pass"}};
151

152
      if (passes.size() == 1) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        // multi_stream_analysis_pass must be in the front of
        // runtime_context_assign_pass
        const std::string msa_pass{"multi_stream_analysis_pass"};
        const std::string depend_pass{"runtime_context_assign_pass"};
        if (passes[0] == msa_pass) {
          auto iter =
              std::find(passes_local.begin(), passes_local.end(), depend_pass);
          if (iter != passes_local.end()) {
            passes_local.insert(iter, msa_pass);
          } else {
            CHECK(false) << "Not find " << depend_pass;
          }
        } else {
          passes_local.push_back(passes[0]);
        }
168
      }
169
      RunPasses(passes_local);
Y
Yan Chunwei 已提交
170 171 172 173 174 175 176 177
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

  const lite::Scope* exec_scope() const { return exec_scope_; }

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  // Set shape(dims) infos of var descs to scope var.
  //  developer can write pass using input / output tensor dims of op.
  //
  // Example: If you have node `Node* softmax_node`,
  //   you can get dims of output tensor in passes:
  //
  //   auto* scope = softmax_node->AsStmt().op()->scope();
  //   auto softmax_out_arg_name =
  //             softmax_node->outlinks.front()->AsArg().name;
  //   auto softmax_out_tensor =
  //             scope->FindVar(softmax_out_arg_name)->Get<lite::Tensor>();
  //   softmax_out_dims = softmax_out_tensor.dims();
  void SetVarDescShapeToScopeVar() {
    auto dims_to_str_func = [](std::vector<int64_t> shape) -> std::string {
      std::string str_res;
      for (size_t i = 0; i < shape.size(); ++i) {
        str_res += std::to_string(shape[i]);
        if (i != shape.size() - 1) {
          str_res += "x";
        }
      }
      return str_res;
    };

    auto* program_desc = program_->program_desc();
    VLOG(5) << "program_desc->BlocksSize():" << program_desc->BlocksSize();
    auto blocks_desc = program_desc->GetBlocks();
    for (size_t bidx = 0; bidx < blocks_desc.size(); ++bidx) {
      auto block_desc = blocks_desc[bidx];
      auto vars_desc = block_desc.GetVars();
      for (size_t vidx = 0; vidx < vars_desc.size(); ++vidx) {
        auto var_desc = vars_desc[vidx];
        VLOG(5) << var_desc.Name() << " "
                << dims_to_str_func(var_desc.GetShape());
        if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
        auto* var = program_->exec_scope()->FindVar(var_desc.Name());
        auto tensor = var->GetMutable<lite::Tensor>();
        if (tensor->dims().size() == 0 && var_desc.GetShape().size() != 0) {
          VLOG(5) << "var_desc.Name():" << var_desc.Name()
                  << " shape:" << dims_to_str_func(var_desc.GetShape());
          tensor->Resize(var_desc.GetShape());
        }
        VLOG(5) << "var_desc.Name():" << var_desc.Name()
                << " shape:" << dims_to_str_func(var_desc.GetShape())
                << " tensor:" << tensor->dims();
      }
    }
  }

Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
    pass->Apply(graph_);
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

  const mir::SSAGraph& ssa_graph() const {
    CHECK(graph_);
    return *graph_;
  }

  mir::SSAGraph* mutable_ssa_graph() {
    CHECK(graph_);
    return graph_.get();
  }

  lite::Scope* exec_scope() { return exec_scope_; }

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
267
    SetVarDescShapeToScopeVar();
Y
Yan Chunwei 已提交
268
    for (auto& x : passes) {
269 270
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
271 272 273 274 275
      if (!pass) {
        LOG(INFO) << "   - Skip " << x << " because the pass isn't found.";
        continue;
      }
      std::set<TargetType> targets;
276
      for (const auto& place : valid_places_) {
277
        targets.insert(place.target);
278
      }
279 280
      bool matched =
          PassMatchesTarget(*pass, targets) && PassMatchesKernels(*pass);
281
      if (!matched) {
282 283
        LOG(INFO) << "   - Skip " << x
                  << " because the target or kernel does not match.";
284 285 286 287
      } else {
        pass->Apply(graph_);
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
288 289 290 291 292 293 294 295 296 297 298 299
    }
  }

 private:
  std::unique_ptr<mir::SSAGraph> graph_;
  std::vector<Place> valid_places_;
  lite::Scope* exec_scope_{};
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle