conv_kernel.cpp 4.1 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28 29 30 31 32
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
33 34 35 36 37 38 39 40 41
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";

  DLOG << " width of one block: " << param->Filter()->WidthOfOneBlock();
  DLOG << " height of one block: " << param->Filter()->HeightOfOneBlock();

  DLOG << " filter dims: " << param->Filter()->dims();


L
liuruilong 已提交
42 43
  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
L
liuruilong 已提交
44 45

    DLOG << " here1 ";
L
liuruilong 已提交
46
    this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
47

L
liuruilong 已提交
48
  } else if (param->Filter()->dims()[1] == 1) {
L
liuruilong 已提交
49 50

    DLOG << " here2 ";
L
liuruilong 已提交
51
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
52

L
liuruilong 已提交
53 54
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
L
liuruilong 已提交
55 56

    DLOG << " here3 ";
L
liuruilong 已提交
57
    this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
58

L
liuruilong 已提交
59 60 61
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
62

L
liuruilong 已提交
63 64 65 66 67
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
68 69
  DLOG << " Compute helper: " << &cl_helper_;
  DLOG << " begin compute ";
L
liuruilong 已提交
70
  auto kernel = this->cl_helper_.KernelAt(0);
L
liuruilong 已提交
71
  DLOG << " get work size ";
L
liuruilong 已提交
72
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
L
liuruilong 已提交
73
  DLOG << " end work size ";
L
liuruilong 已提交
74 75 76 77
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
L
liuruilong 已提交
78 79 80

  DLOG << " get Input ";

L
liuruilong 已提交
81
  auto filter = param.Filter()->GetCLImage();
L
liuruilong 已提交
82 83 84

  DLOG << " get Filter ";

L
liuruilong 已提交
85
  auto output = param.Output();
L
liuruilong 已提交
86 87 88

  DLOG << " get Output ";

L
liuruilong 已提交
89 90 91 92 93 94 95 96 97
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

  cl_int status;

L
liuruilong 已提交
98 99
  DLOG << " begin set kernel arg ";

L
liuruilong 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);

L
liuruilong 已提交
113 114
  DLOG << " end set kernel arg ";

L
liuruilong 已提交
115 116
  CL_CHECK_ERRORS(status);

L
liuruilong 已提交
117 118
  DLOG << " begin enqueue ";

L
liuruilong 已提交
119 120 121 122
  status =
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                             default_work_size.data(), NULL, 0, NULL, NULL);

L
liuruilong 已提交
123 124
  DLOG << " end enqueue ";

L
liuruilong 已提交
125
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
126 127 128 129 130 131 132 133
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif