test_mobilenet_combine.cpp 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"

int main() {
  paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
  paddle_mobile.SetThreadNum(4);
  auto time1 = time();
L
liuruilong 已提交
23 24 25 26

  if (paddle_mobile.Load(
          std::string(g_mobilenet_vision) + "/vision_mobilenet_model",
          std::string(g_mobilenet_vision) + "/vision_mobilenet_params", true)) {
27 28 29 30 31
    auto time2 = time();
    std::cout << "load cost :" << time_diff(time1, time1) << "ms" << std::endl;

    std::vector<float> input;
    std::vector<int64_t> dims{1, 3, 224, 224};
L
liuruilong 已提交
32 33 34

    GetInput<float>(g_test_image_1x3x224x224_vision_mobilenet_input, &input,
                    dims);
35 36 37 38 39 40 41

    auto vec_result = paddle_mobile.Predict(input, dims);
    std::vector<float>::iterator biggest =
        std::max_element(std::begin(vec_result), std::end(vec_result));
    std::cout << " Max element is " << *biggest << " at position "
              << std::distance(std::begin(vec_result), biggest) << std::endl;

42 43 44 45
    // 预热十次
    for (int i = 0; i < 10; ++i) {
      auto vec_result = paddle_mobile.Predict(input, dims);
    }
L
liuruilong 已提交
46

47
    auto time3 = time();
L
liuruilong 已提交
48
    for (int i = 0; i < 1; ++i) {
49 50 51 52 53 54 55 56 57 58 59
      auto vec_result = paddle_mobile.Predict(input, dims);
    }
    auto time4 = time();
    std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
              << std::endl;
  }
  std::cout
      << "如果结果Nan请查看: test/images/test_image_1x3x224x224_float 是否存在?"
      << std::endl;
  return 0;
}