mdl2fluid.py 11.3 KB
Newer Older
xiebaiyuan's avatar
xiebaiyuan 已提交
1
import json
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
2

xiebaiyuan's avatar
xiebaiyuan 已提交
3 4
from core import framework_pb2 as framework_pb2, op_types as types
from yolo.swicher import Swichter
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
5
import shutil
xiebaiyuan's avatar
xiebaiyuan 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18


def load_mdl(mdl_json_path):
    # print('mdl json path : ' + mdl_json_path)
    with open(mdl_json_path, 'r') as f:
        return json.load(f)


class Converter:
    'convert mdlmodel to fluidmodel'

    def __init__(self, mdl_json_path):
        self.mdl_json_path = mdl_json_path
xiebaiyuan's avatar
xiebaiyuan 已提交
19
        print mdl_json_path
xiebaiyuan's avatar
xiebaiyuan 已提交
20 21
        self.mdl_json = load_mdl(self.mdl_json_path)
        self.program_desc = framework_pb2.ProgramDesc()
xiebaiyuan's avatar
xiebaiyuan 已提交
22
        self.weight_list_ = []
xiebaiyuan's avatar
xiebaiyuan 已提交
23
        self.deepwise_weight_list_ = []
xiebaiyuan's avatar
xiebaiyuan 已提交
24 25 26 27 28 29 30 31 32 33 34 35
        # print(json_dick)
        # layers = (json_dick['layer'])
        # for layer in layers:
        #     print(layer)

    def convert(self):
        print 'convert begin.....'
        # add block_desc
        block_desc = self.program_desc.blocks.add()
        block_desc.idx = 0
        block_desc.parent_idx = -1
        self.package_ops(block_desc)
xiebaiyuan's avatar
xiebaiyuan 已提交
36
        self.package_vars(block_desc)
xiebaiyuan's avatar
xiebaiyuan 已提交
37 38
        print 'blocks: '
        print self.program_desc.blocks
xiebaiyuan's avatar
xiebaiyuan 已提交
39 40
        print 'convert end.....'
        desc_serialize_to_string = self.program_desc.SerializeToString()
xiebaiyuan's avatar
xiebaiyuan 已提交
41 42
        shutil.rmtree('yolo/datas/newyolo/')
        shutil.copytree('yolo/datas/multiobjects/float32s_nchw_with_head/', 'yolo/datas/newyolo/')
xiebaiyuan's avatar
xiebaiyuan 已提交
43

xiebaiyuan's avatar
xiebaiyuan 已提交
44
        f = open("yolo/datas/newyolo/__model__", "wb")
xiebaiyuan's avatar
xiebaiyuan 已提交
45 46
        f.write(desc_serialize_to_string)
        f.close()
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48

    def package_ops(self, block_desc):
xiebaiyuan's avatar
xiebaiyuan 已提交
49 50 51

        self.add_op_feed(block_desc)

xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55 56
        # add ops with layer
        if 'layer' in self.mdl_json:

            layers_ = self.mdl_json['layer']
            for layer in layers_:
xiebaiyuan's avatar
xiebaiyuan 已提交
57
                desc_ops_add = block_desc.ops.add()
xiebaiyuan's avatar
xiebaiyuan 已提交
58 59 60 61 62 63

                # print layer
                # for i in layer:
                #     print i
                if 'name' in layer:
                    l_name = layer['name']
xiebaiyuan's avatar
xiebaiyuan 已提交
64
                if 'type' in layer:
xiebaiyuan's avatar
xiebaiyuan 已提交
65
                    self.package_ops_type(desc_ops_add, layer)
xiebaiyuan's avatar
xiebaiyuan 已提交
66

xiebaiyuan's avatar
xiebaiyuan 已提交
67
                if 'weight' in layer:
xiebaiyuan's avatar
xiebaiyuan 已提交
68
                    self.package_ops_weight2inputs(desc_ops_add, layer)
xiebaiyuan's avatar
xiebaiyuan 已提交
69 70

                if 'output' in layer:
xiebaiyuan's avatar
xiebaiyuan 已提交
71
                    self.package_ops_outputs(desc_ops_add, layer)
xiebaiyuan's avatar
xiebaiyuan 已提交
72 73

                if 'input' in layer:
xiebaiyuan's avatar
xiebaiyuan 已提交
74 75 76
                    self.package_ops_inputs(desc_ops_add, layer)

                self.package_ops_attrs(desc_ops_add, layer)
xiebaiyuan's avatar
xiebaiyuan 已提交
77

xiebaiyuan's avatar
xiebaiyuan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        self.add_op_fetch(block_desc)

    def add_op_feed(self, block_desc):
        desc_ops_add = block_desc.ops.add()
        inputs_add = desc_ops_add.inputs.add()
        inputs_add.parameter = 'X'
        inputs_add.arguments.append('feed')
        desc_ops_add.type = 'feed'
        outputs_add = desc_ops_add.outputs.add()
        outputs_add.parameter = 'Out'
        outputs_add.arguments.append('data')
        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'col'
        # boolean
        attrs_add.type = 0
        attrs_add.i = 0

    def add_op_fetch(self, block_desc):
        desc_ops_add = block_desc.ops.add()
        inputs_add = desc_ops_add.inputs.add()
        inputs_add.parameter = 'X'
        inputs_add.arguments.append('conv_pred_87')
        desc_ops_add.type = 'fetch'
        outputs_add = desc_ops_add.outputs.add()
        outputs_add.parameter = 'Out'
        outputs_add.arguments.append('fetch')
        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'col'
        # boolean
        attrs_add.type = 0
        attrs_add.i = 0
xiebaiyuan's avatar
xiebaiyuan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    @staticmethod
    def package_ops_attrs(desc_ops_add, layer):
        # print l_params
        # print desc_ops_add.type
        if desc_ops_add.type == types.op_fluid_fusion_conv_add:
            Converter.pack_fusion_conv_add_attr(desc_ops_add, layer)
        elif desc_ops_add.type == types.op_fluid_relu:
            # fusion_conv_add : attrs
            attrs_add = desc_ops_add.attrs.add()
            attrs_add.name = 'use_mkldnn'
            # boolean
            attrs_add.type = 6
            attrs_add.b = 0

    @staticmethod
    def pack_fusion_conv_add_attr(desc_ops_add, layer):

        # fusion_conv_add : attrs
        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'workspace_size_MB'
        # 0-->INT
        attrs_add.type = 0
        attrs_add.i = 4096

        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'data_format'
        # 2-->STRING
        attrs_add.type = 2
        attrs_add.s = 'AnyLayout'

        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'use_mkldnn'
        # boolean
        attrs_add.type = 6
        attrs_add.b = 0

        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'use_cudnn'
        # boolean
        attrs_add.type = 6
        attrs_add.b = 1

        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'dilations'
        # ints
        attrs_add.type = 3
        attrs_add.ints.append(1)
        attrs_add.ints.append(1)

xiebaiyuan's avatar
xiebaiyuan 已提交
159 160 161 162 163 164
        attrs_add = desc_ops_add.attrs.add()
        attrs_add.name = 'axis'
        # int
        attrs_add.type = 0
        attrs_add.i = 1

xiebaiyuan's avatar
xiebaiyuan 已提交
165 166 167 168 169 170
        if 'param' in layer:
            l_params = layer['param']

            attrs_add = desc_ops_add.attrs.add()
            attrs_add.name = 'paddings'
            # ints
xiebaiyuan's avatar
xiebaiyuan 已提交
171
            attrs_add.type = 3
xiebaiyuan's avatar
xiebaiyuan 已提交
172 173 174 175 176 177
            attrs_add.ints.append(l_params[types.fusion_conv_add_attrs_dict.get('paddings')])
            attrs_add.ints.append(l_params[types.fusion_conv_add_attrs_dict.get('paddings')])

            attrs_add = desc_ops_add.attrs.add()
            attrs_add.name = 'strides'
            # ints
xiebaiyuan's avatar
xiebaiyuan 已提交
178
            attrs_add.type = 3
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182 183 184 185 186
            attrs_add.ints.append(l_params[types.fusion_conv_add_attrs_dict.get('strides')])
            attrs_add.ints.append(l_params[types.fusion_conv_add_attrs_dict.get('strides')])

            attrs_add = desc_ops_add.attrs.add()
            attrs_add.name = 'groups'
            # int
            attrs_add.type = 0
            attrs_add.i = l_params[types.fusion_conv_add_attrs_dict.get('groups')]
xiebaiyuan's avatar
xiebaiyuan 已提交
187
            # attrs_add.i = 1
xiebaiyuan's avatar
xiebaiyuan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

        #
        # op_attrs_tupl = types.op_io_dict.get(desc_ops_add.type) \
        #     .get(types.mdl_attrs_key)
        #
        #
        #
        #
        # # group stride padding
        # print '----------------------'
        # for i, val in enumerate(op_attrs_tupl):
        #     attrs_add = desc_ops_add.attrs.add()
        #     attr_name = op_attrs_tupl[i]
        #     print attr_name
        #     attrs_add.name = attr_name
        #     attrs_add.type = types.fluid_attrs_type_dict.get(attr_name)
        #     attrs_add.
        #     print l_params[types.fusion_conv_add_attrs_dict.get(attr_name)]

        # for p in l_params:
        #     attrs_add = desc_ops_add.attrs.add()

    @staticmethod
    def package_ops_inputs(desc_ops_add, layer):
        l_inputs = layer['input']
        for i in l_inputs:
            inputs_add = desc_ops_add.inputs.add()
            # print i
            inputs_add.parameter = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_inputs_key)
            inputs_add.arguments.append(i)

    @staticmethod
    def package_ops_outputs(desc_ops_add, layer):
        l_outputs = layer['output']
        for o in l_outputs:
            # print o
            outputs_add = desc_ops_add.outputs.add()
            outputs_add.parameter = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_outputs_key)
            outputs_add.arguments.append(o)

xiebaiyuan's avatar
xiebaiyuan 已提交
228
    def package_ops_weight2inputs(self, desc_ops_add, layer):
xiebaiyuan's avatar
xiebaiyuan 已提交
229
        l_weights = layer['weight']
xiebaiyuan's avatar
xiebaiyuan 已提交
230 231
        for w in l_weights:
            self.weight_list_.append(w)
xiebaiyuan's avatar
xiebaiyuan 已提交
232 233 234 235 236

        if layer['type'] == 'DepthwiseConvolutionLayer':
            # print l_weights[0]
            self.deepwise_weight_list_.append(l_weights[0])

xiebaiyuan's avatar
xiebaiyuan 已提交
237 238 239 240 241 242 243 244
        op_weight_tup = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_weight_key)
        # print len(op_weight_tup)
        for i, val in enumerate(op_weight_tup):
            # print i
            # print val
            inputs_add = desc_ops_add.inputs.add()
            inputs_add.parameter = op_weight_tup[i]
            inputs_add.arguments.append(l_weights[i])
xiebaiyuan's avatar
xiebaiyuan 已提交
245

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
        # for w in l_weights:
        #     inputs_add = desc_ops_add.inputs.add()
        #     # print w
        #     inputs_add.parameter = op_weight_tup[0]
        #     inputs_add.arguments.append(w)

    @staticmethod
    def package_ops_type(desc_ops_add, layer):
        l_type = layer['type']
        # print l_type
        # print mdl2fluid_op_layer_dict.get(l_type)
        desc_ops_add.type = types.mdl2fluid_op_layer_dict.get(l_type)
xiebaiyuan's avatar
xiebaiyuan 已提交
258

xiebaiyuan's avatar
xiebaiyuan 已提交
259
    def package_vars(self, block_desc):
xiebaiyuan's avatar
xiebaiyuan 已提交
260 261 262 263 264 265 266 267 268 269
        vars_add = block_desc.vars.add()
        vars_add.name = 'feed'
        vars_add.type.type = 9  # 9 is FEED_MINIBATCH
        vars_add.persistable = 1
        # fetch
        vars_add = block_desc.vars.add()
        vars_add.name = 'fetch'
        vars_add.type.type = 10  # 10 is fetch list
        vars_add.persistable = 1

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275
        json_matrix_ = self.mdl_json['matrix']
        # print json_matrix_
        for j in json_matrix_:
            vars_add = block_desc.vars.add()
            vars_add.name = j
            vars_add.type.type = 7  # 7 is lodtensor
xiebaiyuan's avatar
xiebaiyuan 已提交
276
            # print j
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
            tensor = vars_add.type.lod_tensor.tensor
            tensor.data_type = 5  # 5 is FP32
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291

            # print json_matrix_

            dims_of_matrix = json_matrix_.get(j)
            # dims_size = len(dims_of_matrix)
            # print dims_size

            # if dims_size == 4:
            #     tensor.dims.append(dims_of_matrix[0])  # N
            #     tensor.dims.append(dims_of_matrix[3])  # C
            #     tensor.dims.append(dims_of_matrix[1])  # H
            #     tensor.dims.append(dims_of_matrix[2])  # W
            # else:
xiebaiyuan's avatar
xiebaiyuan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304

            # issues in mdl model filter swich n and c
            if j in self.deepwise_weight_list_ and len(dims_of_matrix) == 4:
                print j
                tensor.dims.append(dims_of_matrix[1])
                tensor.dims.append(dims_of_matrix[0])
                tensor.dims.append(dims_of_matrix[2])
                tensor.dims.append(dims_of_matrix[3])
                print tensor.dims
            else:
                for dims in dims_of_matrix:
                    # print dims
                    tensor.dims.append(dims)
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
305

xiebaiyuan's avatar
xiebaiyuan 已提交
306 307
            if j in self.weight_list_:
                vars_add.persistable = 1
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
308 309 310 311 312
                dims_size = len(dims_of_matrix)
                # print dims_size
                if dims_size == 4:
                    # convert weight from nhwc to nchw
                    Swichter().nhwc2nchw_one_slice_add_head(
xiebaiyuan's avatar
xiebaiyuan 已提交
313 314 315
                        'yolo/datas/multiobjects/float32s_nhwc/' + j + '.bin',
                        'yolo/datas/multiobjects/float32s_nchw_with_head/' + j,
                        'yolo/datas/multiobjects/float32s_nchw/' + j + '.tmp',
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
316 317 318 319 320 321 322
                        dims_of_matrix[0],
                        dims_of_matrix[1],
                        dims_of_matrix[2],
                        dims_of_matrix[3]
                    )
                else:
                    Swichter().copy_add_head(
xiebaiyuan's avatar
xiebaiyuan 已提交
323 324 325
                        'yolo/datas/multiobjects/float32s_nhwc/' + j + '.bin',
                        'yolo/datas/multiobjects/float32s_nchw_with_head/' + j,
                        'yolo/datas/multiobjects/float32s_nchw/' + j + '.tmp'
xiebaiyuan's avatar
convert  
xiebaiyuan 已提交
326
                    )
xiebaiyuan's avatar
xiebaiyuan 已提交
327 328
            else:
                vars_add.persistable = 0
xiebaiyuan's avatar
xiebaiyuan 已提交
329

xiebaiyuan's avatar
xiebaiyuan 已提交
330

xiebaiyuan's avatar
xiebaiyuan 已提交
331
mdl_path = "yolo/datas/multiobjects/YOLO_Universal.json"
xiebaiyuan's avatar
xiebaiyuan 已提交
332 333
converter = Converter(mdl_path)
converter.convert()