selected_rows.h 4.1 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <vector>

#include "framework/lod_tensor.h"
21
#include "framework/mixed_vector.h"
E
eclipsess 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#include "framework/tensor.h"
#include "memory/t_malloc.h"

namespace paddle_mobile {
namespace framework {

class SelectedRows {
  /*
   * @brief We can use the SelectedRows structure to reproduce a sparse table.
   *  A sparse table is a key-value structure that the key is an `int64_t`
   * number,
   *  and the value is a Tensor which the first dimension is 0.
   *  You can use the following interface to operate the sparse table, and you
   * can find
   *  some detail information from the comments of each interface:
   *
   *  HasKey(key), whether the sparse table has the specified key.
   *  Set(key, value), set a key-value pair into the sparse table.
   *  Get(keys, value*), get value by given key list and apply it to the given
   * value pointer
   *    with the specified offset.
   *
   */
 public:
  SelectedRows(const std::vector<int64_t>& rows, const int64_t& height)
      : rows_(rows), height_(height) {
    value_.reset(new Tensor());
  }

  SelectedRows() {
    height_ = 0;
    value_.reset(new Tensor());
  }

  // platform::Place place() const { return value_->place(); }

  const Tensor& value() const { return *value_; }

  Tensor* mutable_value() { return value_.get(); }

  int64_t height() const { return height_; }

  void set_height(int64_t height) { height_ = height; }

  const Vector<int64_t>& rows() const { return rows_; }

  Vector<int64_t>* mutable_rows() { return &rows_; }

  void set_rows(const Vector<int64_t>& rows) { rows_ = rows; }

  /*
   * @brief wheter has the specified key in the table.
   *
   * @return true if the key is exists.
   */
  bool HasKey(int64_t key) const;

  /*
   * @brief Get value by the key list, if the
   *
   * @return a list of keys which does not exists in table
   */
  std::vector<int64_t> Get(std::vector<int64_t> keys,
                           framework::Tensor* tensor) const;

  /*
   * @brief Set a key-value pair into the table.
   *  This function will double the value memory if it's not engouth.
   *
   * @note:
   *    1. The first dim of the value should be 1
   *    2. The value should be initialized and the data type
   *       should be the same with the table.
   *
   * @return true if the key is a new one, otherwise false
   *
   */
  bool Set(int64_t key, const Tensor& value);

  /*
   * @brief Get the index of key in rows
   *
   * @return -1 if the key does not exists.
   */
  int64_t Index(int64_t key) const {
    auto it = std::find(rows_.begin(), rows_.end(), key);
    if (it == rows_.end()) {
      return static_cast<int64_t>(-1);
    }
    return static_cast<int64_t>(std::distance(rows_.begin(), it));
  }

  DDim GetCompleteDims() const {
    std::vector<int64_t> dims = vectorize(value_->dims());
    dims[0] = height_;
    return make_ddim(dims);
  }

 private:
  // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here.
  // SelectedRows are simply concated when adding together. Until a
  // SelectedRows add a Tensor, will the duplicate rows be handled.
  Vector<int64_t> rows_;
  std::unique_ptr<Tensor> value_{nullptr};
  int64_t height_;
};

/*
 * Serialize/Desiralize SelectedRows to std::ostream
 * You can pass ofstream or ostringstream to serilize to file
 * or to a in memory string. GPU tensor will be copied to CPU.
 */
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows);
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows);

}  // namespace framework
}  // namespace paddle_mobile