conv_transpose_compute.cc 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/conv_transpose_compute.h"
#include <vector>
#include "lite/arm/math/funcs.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void Conv2DTransposeCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();
  int win = x_dims[3];  // nchw
  int hin = x_dims[2];
  int chin = x_dims[1];
  int num = x_dims[0];
  int wout = o_dims[3];
  int hout = o_dims[2];
  int chout = o_dims[1];
  int kw = w_dims[3];  // oihw
  int kh = w_dims[2];
  int group = param.groups;

  // deconv weights layout: chin * chout * kh * kw
  auto& ctx = this->ctx_->template As<ARMContext>();
  int m = chout * kw * kh / group;
  int n = hin * win;
  int k = chin / group;

  ctx.ExtendWorkspace(group * m * n * sizeof(float));

  lite::Tensor tmp_weights;
  lite::arm::math::prepackA(
      &tmp_weights, *(param.filter), 1., m, k, group, true, &ctx);
  param.filter->Resize(tmp_weights.dims());
  param.filter->CopyDataFrom(tmp_weights);
  param.filter->Resize(w_dims);
}

void Conv2DTransposeCompute::Run() {
  auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto o_dims = param.output->dims();
  auto w_dims = param.filter->dims();
  int num = x_dims[0];
  int chin = x_dims[1];
  int hin = x_dims[2];
  int win = x_dims[3];
  int chout = o_dims[1];
  int hout = o_dims[2];
  int wout = o_dims[3];
  int kw = w_dims[3];  // oihw
  int kh = w_dims[2];
  int group = param.groups;
  bool fuse_relu = param.fuse_relu;
  bool flag_bias = (param.bias != nullptr);

  int m = chout * kw * kh / group;
  int n = hin * win;
  int k = chin / group;
  int group_size_in = win * hin * chin / group;
  int group_size_out = wout * hout * chout / group;
  int group_size_coldata = m * n;
  auto& ctx = this->ctx_->template As<ARMContext>();
  int hblock = lite::arm::math::get_hblock(ctx.arch());
  int m_roundup = hblock * ((m + hblock - 1) / hblock);
  int group_size_weights = ((m_roundup * k + 15) / 16) * 16;
  bool flag_1x1s1p1 = (kw == 1) && (kh == 1) && (param.strides[0] == 1) &&
                      (param.strides[1] == 1) && (param.paddings[0] == 0) &&
                      (param.paddings[1] == 0) && (param.dilations[0] == 1) &&
                      (param.dilations[1] == 1);
  ctx.ExtendWorkspace(sizeof(float) * group * m * n);

  auto din = param.x->data<float>();
  auto dout = param.output->mutable_data<float>();
  auto weights = param.filter->data<float>();
  for (int i = 0; i < num; i++) {
    const float* din_batch = din + i * chin * hin * win;
    float* dout_batch = dout + i * chout * hout * wout;
    float* col_data = static_cast<float*>(ctx.workspace_data<float>()) +
                      ctx.l2_cache_size() / sizeof(float);
    if (flag_1x1s1p1) {
      col_data = dout_batch;
    }
    for (int g = 0; g < group; g++) {
      const float* din_group = din_batch + g * group_size_in;
      const float* weights_group = weights + g * group_size_weights;
      float* coldata_group = col_data + g * group_size_coldata;

      lite::arm::math::sgemm_prepack(false,
                                     m,
                                     n,
                                     k,
                                     weights_group,
                                     din_group,
                                     n,
                                     0.,
                                     coldata_group,
                                     n,
                                     nullptr,
                                     false,
                                     fuse_relu && (!flag_bias),
                                     &ctx);
    }
    if (!flag_1x1s1p1) {
      lite::arm::math::col2im<float>(col_data,
                                     chout,
                                     hout,
                                     wout,
                                     kh,
                                     kw,
                                     param.paddings[0],
                                     param.paddings[1],
                                     param.strides[0],
                                     param.strides[1],
                                     param.dilations[0],
                                     param.dilations[1],
                                     dout_batch);
    }
    if (flag_bias) {
      lite::arm::math::fill_bias_relu<float>(
          dout_batch,
          static_cast<const float*>(param.bias->data<float>()),
          chout,
          wout * hout,
          flag_bias,
          fuse_relu);
    }
  }
}
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d_transpose,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::Conv2DTransposeCompute,
                     def)
    .BindInput("x", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("output", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();