yolo_box_op.cc 2.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/yolo_box_op.h"
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {
namespace operators {

bool YoloBoxOp::CheckShape() const {
  auto* X = param_.X;
  auto* ImgSize = param_.ImgSize;
  auto* Boxes = param_.Boxes;
  auto* Scores = param_.Scores;
  CHECK_OR_FALSE(X);
  CHECK_OR_FALSE(ImgSize);
  CHECK_OR_FALSE(Boxes);
  CHECK_OR_FALSE(Scores);
J
juncaipeng 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46

  auto dim_x = X->dims();
  auto dim_imgsize = ImgSize->dims();
  std::vector<int> anchors = param_.anchors;
  int anchor_num = anchors.size() / 2;
  auto class_num = param_.class_num;
  CHECK_OR_FALSE(dim_x.size() == 4);
  CHECK_OR_FALSE(dim_x[1] == anchor_num * (5 + class_num));
  CHECK_OR_FALSE(dim_imgsize[0] == dim_x[0]);
  CHECK_OR_FALSE(dim_imgsize[1] == 2);
  CHECK_OR_FALSE(anchors.size() > 0 && anchors.size() % 2 == 0);
  CHECK_OR_FALSE(class_num > 0);
  return true;
Y
Yan Chunwei 已提交
47 48
}

49
bool YoloBoxOp::InferShapeImpl() const {
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  auto* X = param_.X;
  auto anchors = param_.anchors;
  int anchor_num = anchors.size() / 2;
  auto class_num = param_.class_num;
  DDim x_dim = X->dims();

  int box_num = x_dim[2] * x_dim[3] * anchor_num;
  param_.Boxes->Resize({x_dim[0], box_num, 4});
  param_.Scores->Resize({x_dim[0], box_num, class_num});
  return true;
}

bool YoloBoxOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
  auto X = op_desc.Input("X").front();
  auto ImgSize = op_desc.Input("ImgSize").front();
  auto Boxes = op_desc.Output("Boxes").front();
  auto Scores = op_desc.Output("Scores").front();
  param_.X = scope->FindVar(X)->GetMutable<lite::Tensor>();
  param_.ImgSize = scope->FindVar(ImgSize)->GetMutable<lite::Tensor>();
  param_.Boxes = scope->FindVar(Boxes)->GetMutable<lite::Tensor>();
  param_.Scores = scope->FindVar(Scores)->GetMutable<lite::Tensor>();
  param_.anchors = op_desc.GetAttr<std::vector<int>>("anchors");
  param_.class_num = op_desc.GetAttr<int>("class_num");
  param_.conf_thresh = op_desc.GetAttr<float>("conf_thresh");
  param_.downsample_ratio = op_desc.GetAttr<int>("downsample_ratio");
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(yolo_box, paddle::lite::operators::YoloBoxOp);