slice_op.cc 6.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/slice_op.h"
#include <algorithm>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool SliceOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Out);
25 26
  CHECK_LT(param_.X->dims().size(), 7)
      << "The rank of input X should be less than 7";
Y
Yan Chunwei 已提交
27 28 29
  return true;
}

30
bool SliceOp::InferShapeImpl() const {
Y
Yan Chunwei 已提交
31 32 33 34
  CHECK_OR_FALSE(param_.Out);
  // TODO(Superjomn) Enable data sharing.
  auto in_dims = param_.X->dims();
  auto out_dims = in_dims;
35 36
  // CHECK_EQ(param_.starts.size(), param_.ends.size())
  //    << "for slice op starts and ends must be equal";
Y
Yan Chunwei 已提交
37 38 39 40 41 42
  int dim_value, start, end;
  auto axes = param_.axes;
  auto starts = param_.starts;
  auto ends = param_.ends;
  auto decrease_axis = param_.decrease_axis;
  for (size_t i = 0; i < axes.size(); ++i) {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    CHECK_LT(param_.axes[i], in_dims.size()) << "The index of dimension in "
                                                "axes must be less than the "
                                                "size of input shape.";
    if (param_.infer_flags[i] == -1) {
      out_dims[axes[i]] = -1;
    } else {
      // infer out_dim shape
      dim_value = out_dims[axes[i]];
      if (dim_value > 0) {
        start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
        end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
        start = std::max(start, 0);
        end = std::max(end, 0);
        end = std::min(end, dim_value);
        out_dims[axes[i]] = end - start;
      }
Y
Yan Chunwei 已提交
59 60
    }
  }
61
  // generate new shape
Y
Yan Chunwei 已提交
62 63 64
  if (decrease_axis.size() > 0) {
    std::vector<int64_t> new_out_shape;
    for (size_t i = 0; i < decrease_axis.size(); ++i) {
65 66 67
      if (param_.infer_flags[i] != -1) {
        CHECK_EQ(out_dims[decrease_axis[i]], 1) << "decrease dim should be 1";
      }
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
      out_dims[decrease_axis[i]] = 0;
    }
    for (int i = 0; i < out_dims.size(); ++i) {
      if (out_dims[i] != 0) {
        new_out_shape.push_back(out_dims[i]);
      }
    }
    if (new_out_shape.size() == 0) {
      new_out_shape.push_back(1);
    }
    DDim new_dims;
    new_dims.ConstructFrom(new_out_shape);
    out_dims = new_dims;
  }
  param_.Out->Resize(out_dims);
83 84 85
  if (axes[0] != 0) {
    param_.Out->set_lod(param_.X->lod());
  }
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96
  return true;
}

bool SliceOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  param_.X =
      scope->FindVar(opdesc.Input("Input").front())->GetMutable<lite::Tensor>();
  param_.Out =
      scope->FindVar(opdesc.Output("Out").front())->GetMutable<lite::Tensor>();
  CHECK(param_.X);
  CHECK(param_.Out);
  param_.axes = opdesc.GetAttr<std::vector<int>>("axes");
97 98 99 100 101 102 103 104

  if (opdesc.HasAttr("infer_flags")) {
    param_.infer_flags = opdesc.GetAttr<std::vector<int>>("infer_flags");
  } else {
    // Initialize infer_flags with 1.
    // To be compatible with other op tests in which infer_flags is not set.
    param_.infer_flags = std::vector<int>(param_.axes.size(), 1);
  }
105 106 107
  if (opdesc.HasAttr("decrease_axis")) {
    param_.decrease_axis = opdesc.GetAttr<std::vector<int>>("decrease_axis");
  }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  // The priority: StartsTensor > StartsTensorList > attr(starts).
  // The priority: EndsTensor > EndsTensorList > attr(ends).
  int starts_size, ends_size;
  if (opdesc.HasAttr("starts")) {
    param_.starts = opdesc.GetAttr<std::vector<int>>("starts");
  }
  if (opdesc.HasAttr("ends")) {
    param_.ends = opdesc.GetAttr<std::vector<int>>("ends");
  }
  starts_size = param_.starts.size();
  ends_size = param_.ends.size();

  if (opdesc.HasInput("StartsTensorList") &&
      !opdesc.Input("StartsTensorList").empty()) {
    LOG(INFO) << "opdesc input size "
              << opdesc.Input("StartsTensorList").size();
    LOG(INFO) << "param init size " << param_.StartsTensorList.size();
    auto StartsTensorList = opdesc.Input("StartsTensorList");
    param_.StartsTensorList.clear();
    for (auto var : StartsTensorList) {
      param_.StartsTensorList.push_back(
          scope->FindVar(var)->GetMutable<lite::Tensor>());
    }
    CHECK_GT(param_.StartsTensorList.size(), 0)
        << "StartsTensorList size can't be zero";
    starts_size = param_.StartsTensorList.size();
  }
  if (opdesc.HasInput("EndsTensorList") &&
      !opdesc.Input("EndsTensorList").empty()) {
    auto EndsTensorList = opdesc.Input("EndsTensorList");
    param_.EndsTensorList.clear();
    for (auto var : EndsTensorList) {
      param_.EndsTensorList.push_back(
          scope->FindVar(var)->GetMutable<lite::Tensor>());
    }
    CHECK_GT(param_.EndsTensorList.size(), 0)
        << "EndsTensorList size can't be zero";
    ends_size = param_.EndsTensorList.size();
  }

  if (opdesc.HasInput("StartsTensor") &&
      !opdesc.Input("StartsTensor").empty()) {
    param_.StartsTensor = scope->FindVar(opdesc.Input("StartsTensor").front())
                              ->GetMutable<lite::Tensor>();
  } else {
    CHECK_EQ(starts_size, param_.axes.size())
        << "The size of starts must be equal to the size of axes.";
  }
  if (opdesc.HasInput("EndsTensor") && !opdesc.Input("EndsTensor").empty()) {
    param_.EndsTensor = scope->FindVar(opdesc.Input("EndsTensor").front())
                            ->GetMutable<lite::Tensor>();
  } else {
    CHECK_EQ(ends_size, param_.axes.size())
        << "The size of ends must be equal to the size of axes.";
  }
Y
Yan Chunwei 已提交
164 165 166 167 168 169 170 171
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(slice, paddle::lite::operators::SliceOp);