pool_op.h 4.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

Z
zhupengyang 已提交
17
#include <algorithm>
18
#include <memory>
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include <string>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/operators/op_params.h"
#include "lite/utils/all.h"

namespace paddle {
namespace lite {
namespace operators {

class PoolOpLite : public OpLite {
 public:
  PoolOpLite() {}

  explicit PoolOpLite(const std::string &type) : OpLite(type) {}

  bool CheckShape() const override;

40
  bool InferShapeImpl() const override;
Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  // TODO(Superjomn) replace framework::OpDesc with a lite one.
  bool AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) override {
    auto x = op_desc.Input("X").front();
    auto out = op_desc.Output("Out").front();

    CHECK(scope->FindVar(x));
    CHECK(scope->FindVar(out));
    param_.x = scope->FindVar(x)->GetMutable<lite::Tensor>();
    param_.output = scope->FindVar(out)->GetMutable<lite::Tensor>();

    param_.pooling_type = op_desc.GetAttr<std::string>("pooling_type");
    param_.ksize = op_desc.GetAttr<std::vector<int>>("ksize");
    param_.global_pooling = op_desc.GetAttr<bool>("global_pooling");
    param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
56
    auto paddings = op_desc.GetAttr<std::vector<int>>("paddings");
Y
Yan Chunwei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69

    if (op_desc.HasAttr("exclusive")) {
      param_.exclusive = op_desc.GetAttr<bool>("exclusive");
    }
    if (op_desc.HasAttr("adaptive")) {
      param_.adaptive = op_desc.GetAttr<bool>("adaptive");
    }
    if (op_desc.HasAttr("ceil_mode")) {
      param_.ceil_mode = op_desc.GetAttr<bool>("ceil_mode");
    }
    if (op_desc.HasAttr("use_quantizer")) {
      param_.use_quantizer = op_desc.GetAttr<bool>("use_quantizer");
    }
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    if (op_desc.HasAttr("padding_algorithm")) {
      padding_algorithm_ = op_desc.GetAttr<std::string>("padding_algorithm");
    }
    // 2-pad to 4-pad
    if (paddings.size() == 2L) {
      for (size_t i = 0; i < 2L; ++i) {
        int copy_pad = *(paddings.begin() + 2 * i);
        paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
      }
    } else {
      if (paddings.size() != 4L) {
        LOG(FATAL)
            << "Paddings size should be the same or twice as the inputs size.";
      }
    }
    param_.paddings = std::make_shared<std::vector<int>>(paddings);

Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95
    return true;
  }

  void AttachKernel(KernelBase *kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "pool2d"; }

 private:
  mutable PoolParam param_;
96
  std::string padding_algorithm_{""};
Y
Yan Chunwei 已提交
97 98
};

Z
zhupengyang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
inline void UpdatePadding(std::vector<int> *paddings,
                          const bool global_pooling,
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const lite::DDim data_dims,
                          const std::vector<int> &strides,
                          const std::vector<int> &ksize) {
  // when padding_algorithm is "VALID" or "SAME"
  if (padding_algorithm == "SAME") {
    for (int i = 0; i < strides.size(); ++i) {
      int out_size = (data_dims[i + 2] + strides[i] - 1) / strides[i];
      int pad_sum =
          std::max((out_size - 1) * strides[i] + ksize[i] - data_dims[i + 2],
                   (int64_t)0);
      int pad_0 = pad_sum / 2;
      int pad_1 = pad_sum - pad_0;
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

Y
Yan Chunwei 已提交
132 133 134
}  // namespace operators
}  // namespace lite
}  // namespace paddle