gru_op.cc 3.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/gru_op.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool GRUOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.input)
  CHECK_OR_FALSE(param_.weight)
  CHECK_OR_FALSE(param_.batch_gate)
  CHECK_OR_FALSE(param_.batch_reset_hidden_prev)
  CHECK_OR_FALSE(param_.batch_hidden)
  CHECK_OR_FALSE(param_.hidden)

31 32
  const auto& input_dims = param_.input->dims();
  const auto& weight_dims = param_.weight->dims();
Y
Yan Chunwei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  int input_size = input_dims[1];
  int frame_size = weight_dims[0];
  CHECK_EQ_OR_FALSE(input_size, frame_size * 3)
  CHECK_EQ_OR_FALSE(weight_dims[1], frame_size * 3)

  if (param_.h0) {
    auto h0_dims = param_.h0->dims();
    CHECK_EQ_OR_FALSE(h0_dims[1], frame_size)
  }

  if (param_.bias) {
    auto bias_dims = param_.bias->dims();
    int bias_height = bias_dims[0];
    int bias_width = bias_dims[1];
    CHECK_EQ_OR_FALSE(bias_height, 1)
    CHECK_EQ_OR_FALSE(bias_width, frame_size * 3)
  }

  return true;
}

54
bool GRUOpLite::InferShapeImpl() const {
55 56
  const auto& input_dims = param_.input->dims();
  const auto& weight_dims = param_.weight->dims();
Y
Yan Chunwei 已提交
57 58 59 60
  int frame_size = weight_dims[0];
  auto batch_size = input_dims[0];

  param_.batch_gate->Resize(input_dims);
61 62 63 64 65

  DDim out_dims({batch_size, frame_size});
  param_.batch_reset_hidden_prev->Resize(out_dims);
  param_.batch_hidden->Resize(out_dims);
  param_.hidden->Resize(out_dims);
Y
Yan Chunwei 已提交
66 67 68 69 70

  *(param_.hidden->mutable_lod()) = param_.input->lod();
  return true;
}

71
bool GRUOpLite::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
Y
Yan Chunwei 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  auto input = op_desc.Input("Input").front();
  auto weight = op_desc.Input("Weight").front();
  auto batch_gate = op_desc.Output("BatchGate").front();
  auto batch_reset_hidden_prev = op_desc.Output("BatchResetHiddenPrev").front();
  auto batch_hidden = op_desc.Output("BatchHidden").front();
  auto hidden = op_desc.Output("Hidden").front();

  param_.input = scope->FindVar(input)->GetMutable<lite::Tensor>();
  if (op_desc.Input("H0").size()) {
    auto h0 = op_desc.Input("H0").front();
    param_.h0 = scope->FindVar(h0)->GetMutable<lite::Tensor>();
  }
  param_.weight = scope->FindVar(weight)->GetMutable<lite::Tensor>();

  param_.batch_gate = scope->FindVar(batch_gate)->GetMutable<lite::Tensor>();
  param_.batch_reset_hidden_prev =
      scope->FindVar(batch_reset_hidden_prev)->GetMutable<lite::Tensor>();
  param_.batch_hidden =
      scope->FindVar(batch_hidden)->GetMutable<lite::Tensor>();
  param_.hidden = scope->FindVar(hidden)->GetMutable<lite::Tensor>();

  if (op_desc.HasInput("Bias")) {
    auto bias = op_desc.Input("Bias").front();
    param_.bias = scope->FindVar(bias)->GetMutable<lite::Tensor>();
  }

  param_.gate_activation = op_desc.GetAttr<std::string>("gate_activation");
  param_.activation = op_desc.GetAttr<std::string>("activation");
  param_.is_reverse = op_desc.GetAttr<bool>("is_reverse");
  param_.origin_mode = op_desc.GetAttr<bool>("origin_mode");

  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(gru, paddle::lite::operators::GRUOpLite)