paddle_api_test.cc 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/utils/cp_logging.h"
22
#include "lite/utils/io.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
DEFINE_string(model_dir, "", "");

namespace paddle {
namespace lite_api {

TEST(CxxApi, run) {
  lite_api::CxxConfig config;
  config.set_model_dir(FLAGS_model_dir);
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  auto predictor = lite_api::CreatePaddlePredictor(config);

38 39
  LOG(INFO) << "Version: " << predictor->GetVersion();

40
  auto& inputs = predictor->GetInputNames();
41 42 43 44
  LOG(INFO) << "input size: " << inputs.size();
  for (int i = 0; i < inputs.size(); i++) {
    LOG(INFO) << "inputnames: " << inputs[i];
  }
45
  auto& outputs = predictor->GetOutputNames();
46 47 48 49
  for (int i = 0; i < outputs.size(); i++) {
    LOG(INFO) << "outputnames: " << outputs[i];
  }
  auto input_tensor = predictor->GetInputByName(inputs[0]);
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

58
  auto output = predictor->GetTensor(outputs[0]);
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);

  predictor->SaveOptimizedModel(FLAGS_model_dir + ".opt2");
  predictor->SaveOptimizedModel(FLAGS_model_dir + ".opt2.naive",
                                LiteModelType::kNaiveBuffer);
}

71
// Demo1 for Mobile Devices :Load model from file and run
Y
Yan Chunwei 已提交
72 73 74 75 76 77 78
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(LightApi, run) {
  lite_api::MobileConfig config;
  config.set_model_dir(FLAGS_model_dir + ".opt2.naive");

  auto predictor = lite_api::CreatePaddlePredictor(config);

79
  auto& inputs = predictor->GetInputNames();
80 81
  LOG(INFO) << "input size: " << inputs.size();
  for (int i = 0; i < inputs.size(); i++) {
82
    LOG(INFO) << "inputnames: " << inputs.at(i);
83
  }
84
  auto& outputs = predictor->GetOutputNames();
85
  for (int i = 0; i < outputs.size(); i++) {
86
    LOG(INFO) << "outputnames: " << outputs.at(i);
87 88
  }

89 90
  LOG(INFO) << "Version: " << predictor->GetVersion();

Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  auto output = predictor->GetOutput(0);
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);
}
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

// Demo2 for Loading model from memory
TEST(MobileConfig, LoadfromMemory) {
  // Get naive buffer
  auto model_path = std::string(FLAGS_model_dir) + ".opt2.naive/__model__.nb";
  auto params_path = std::string(FLAGS_model_dir) + ".opt2.naive/param.nb";
  std::string model_buffer = lite::ReadFile(model_path);
  size_t size_model = model_buffer.length();
  std::string params_buffer = lite::ReadFile(params_path);
  size_t size_params = params_buffer.length();
  // set model buffer and run model
  lite_api::MobileConfig config;
  config.set_model_buffer(
      model_buffer.c_str(), size_model, params_buffer.c_str(), size_params);

  auto predictor = lite_api::CreatePaddlePredictor(config);
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  const auto output = predictor->GetOutput(0);
  const float* raw_output = output->data<float>();

  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << raw_output[i];
  }
}

Y
Yan Chunwei 已提交
141 142 143 144
#endif

}  // namespace lite_api
}  // namespace paddle