light_api_impl.cc 3.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"
16
#include <string>
Y
Yan Chunwei 已提交
17
#include "lite/api/paddle_api.h"
18
#include "lite/core/version.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite_api {

class LightPredictorImpl : public PaddlePredictor {
 public:
  LightPredictorImpl() = default;

  std::unique_ptr<Tensor> GetInput(int i) override;

  std::unique_ptr<const Tensor> GetOutput(int i) const override;

  void Run() override;

34
  std::string GetVersion() const override;
35 36
  const std::vector<std::string>& GetInputNames() override;
  const std::vector<std::string>& GetOutputNames() override;
37

Y
Yan Chunwei 已提交
38 39
  std::unique_ptr<const Tensor> GetTensor(
      const std::string& name) const override;
40 41
  // Get InputTebsor by name
  std::unique_ptr<Tensor> GetInputByName(const std::string& name) override;
Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49

  void Init(const MobileConfig& config);

 private:
  std::unique_ptr<lite::LightPredictor> raw_predictor_;
};

void LightPredictorImpl::Init(const MobileConfig& config) {
50
  // LightPredictor Only support NaiveBuffer backend in publish lib
Y
Yan Chunwei 已提交
51
  raw_predictor_.reset(new lite::LightPredictor(config.model_dir(),
52 53 54
                                                config.model_buffer(),
                                                config.param_buffer(),
                                                config.model_from_memory(),
Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
                                                LiteModelType::kNaiveBuffer));
}

std::unique_ptr<Tensor> LightPredictorImpl::GetInput(int i) {
  return std::unique_ptr<Tensor>(new Tensor(raw_predictor_->GetInput(i)));
}

std::unique_ptr<const Tensor> LightPredictorImpl::GetOutput(int i) const {
  return std::unique_ptr<Tensor>(new Tensor(raw_predictor_->GetOutput(i)));
}

void LightPredictorImpl::Run() { raw_predictor_->Run(); }

68 69
std::string LightPredictorImpl::GetVersion() const { return lite::version(); }

Y
Yan Chunwei 已提交
70 71 72 73 74
std::unique_ptr<const Tensor> LightPredictorImpl::GetTensor(
    const std::string& name) const {
  return std::unique_ptr<const Tensor>(
      new Tensor(raw_predictor_->GetTensor(name)));
}
75 76 77 78 79 80
std::unique_ptr<Tensor> LightPredictorImpl::GetInputByName(
    const std::string& name) {
  return std::unique_ptr<Tensor>(
      new Tensor(raw_predictor_->GetInputByName(name)));
}

81
const std::vector<std::string>& LightPredictorImpl::GetInputNames() {
82 83 84
  return raw_predictor_->GetInputNames();
}

85
const std::vector<std::string>& LightPredictorImpl::GetOutputNames() {
86 87
  return raw_predictor_->GetOutputNames();
}
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97 98

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const MobileConfig& config) {
  auto x = std::make_shared<LightPredictorImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle