elementwise_compute.cc 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/fpga/elementwise_compute.h"
#include <string>
17
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void ElementwiseAddCompute::PrepareForRun() {
  zynqmp::ElementwiseAddParam& ew_param = pe_.param();
  auto& param = Param<operators::ElementwiseParam>();

  param.Out->mutable_data<float16>();

  ew_param.inputs = {param.X->ZynqTensor(), param.Y->ZynqTensor()};
  ew_param.output = param.Out->ZynqTensor();
  ew_param.axis = param.axis;
  ew_param.relu.enabled = false;

  pe_.init();
  pe_.apply();
}
40 41 42 43 44
void ElementwiseAddCompute::Run() { 
  pe_.dispatch();
  zynqmp::ElementwiseAddParam& ew_param = pe_.param();
  // ew_param.output->saveToFile("ew", true);
}
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

void ElementwiseAddActivationCompute::PrepareForRun() {
  zynqmp::ElementwiseAddParam& ew_param = pe_.param();
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  if (param.act_type != "relu") {
    LOG(FATAL) << "unsupported Activation type: " << param.act_type;
  }
  param.Out->mutable_data<float16>();
  ew_param.inputs = {param.X->ZynqTensor(), param.Y->ZynqTensor()};
  ew_param.output = param.Out->ZynqTensor();
  ew_param.axis = param.axis;
  ew_param.relu.enabled = true;
  pe_.init();
  pe_.apply();
}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
void ElementwiseAddActivationCompute::Run() { 
  pe_.dispatch(); 
}

void ElementwiseMulCompute::PrepareForRun() {
  zynqmp::ScaleParam& scale_param = pe_.param();
  auto& param = Param<operators::ElementwiseParam>();
  param.Out->mutable_data<float16>();


  scale_param.input = param.X->ZynqTensor();
  scale_param.output = param.Out->ZynqTensor();
  // param.Y->ZynqTensor()->saveToFile("scale_y", true);

  std::cout << "y_production:" << param.Y->dims().production() << std::endl;

  // exit(-1);

  scale_param.relu.enabled = false;

  int channel = scale_param.input->shape().channel();
  zynqmp::Tensor* scale = new zynqmp::Tensor();
  zynqmp::Tensor* bias = new zynqmp::Tensor();
  scale_param.scale = scale;
  scale_param.bias = bias;
  zynqmp::Shape shape(zynqmp::N, {channel});
  float* scale_data = scale->mutableData<float>(zynqmp::FP32, shape);
  float* bias_data = bias->mutableData<float>(zynqmp::FP32, shape);

  float scale_value = param.Y->data<float>()[0];;

  std::cout << "scale_value:" << scale_value << std::endl;
  std::cout << "channel:" << channel << std::endl;
  std::cout << "data_type:" << param.Y->ZynqTensor()->dataType() << std::endl;

  // exit(-1);

  for (int i = 0; i < channel; ++i) {
    if (param.Y->dims().production() != 1) {
      scale_value = param.Y->ZynqTensor()->data<float>()[i];
    } 
    scale_data[i] = scale_value;
    
    bias_data[i] = 0;
  }

  pe_.init();
  pe_.apply();

  // scale_param.input->saveToFile("scale_input", true);
  // scale_param.scale->saveToFile("scale_scale", true);
  param.Y->ZynqTensor()->saveToFile("ew_y", true);

  // exit(-1);
}

void ElementwiseMulCompute::Run() { 
  pe_.dispatch();
  zynqmp::ScaleParam& scale_param = pe_.param();
  // scale_param.output->saveToFile("ew_mul", true);
  // exit(-1);
}
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(elementwise_add,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::ElementwiseAddCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
139
               {LiteType::GetTensorTy(TARGET(kARM))})
Y
Yan Chunwei 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kFPGA,
    kFP16,
    kNHWC,
    paddle::lite::kernels::fpga::ElementwiseAddActivationCompute,
    def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

REGISTER_LITE_KERNEL(elementwise_mul,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::ElementwiseMulCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();