cxx_api.h 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <mutex>  //NOLINT
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

32 33 34 35 36 37 38
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
39 40 41 42 43 44 45
/*
 * Predictor for inference, input a model, it will optimize and execute it.
 */
class LITE_API Predictor {
 public:
  // Create an empty predictor.
  Predictor() { scope_ = std::make_shared<Scope>(); }
46

Y
Yan Chunwei 已提交
47 48 49 50 51
  // Create a predictor with the weight variable scope set.
  explicit Predictor(const std::shared_ptr<lite::Scope>& root_scope)
      : scope_(root_scope) {}

  // Build from a model, with places set for hardware config.
52 53 54 55 56 57
  void Build(
      const lite_api::CxxConfig& config,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

Y
Yan Chunwei 已提交
58 59
  void Build(
      const std::string& model_path,
60 61
      const std::string& model_file_path,
      const std::string& param_file_path,
Y
Yan Chunwei 已提交
62 63
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
64 65
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool memory_from_memory = false);
Y
Yan Chunwei 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

  void Build(const cpp::ProgramDesc& desc,
             const std::vector<Place>& valid_places,
             const std::vector<std::string>& passes = {});

  void GenRuntimeProgram();

  // Run the predictor for a single batch of data.
  void Run() {
    if (!program_generated_) {
      GenRuntimeProgram();
    }
    program_->Run();
  }

  // Get offset-th col of feed inputs.
  lite::Tensor* GetInput(size_t offset);
83 84 85
  // get input by name.
  lite::Tensor* GetInputByName(const std::string& name);
  // get inputnames and get outputnames.
S
sangoly 已提交
86 87
  std::vector<std::string> GetInputNames();
  std::vector<std::string> GetOutputNames();
88 89 90
  // get param names
  std::vector<std::string> GetParamNames();

91
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
92 93 94

  // Get offset-th col of fetch results.
  const lite::Tensor* GetOutput(size_t offset) const;
95
  std::vector<const lite::Tensor*> GetOutputs() const;
Y
Yan Chunwei 已提交
96 97

  const cpp::ProgramDesc& program_desc() const;
98 99 100
  // get a mutable tensor according to its name
  lite::Tensor* GetMutableTensor(const std::string& name);
  // get a const tensor according to its name
Y
Yan Chunwei 已提交
101 102 103 104 105 106
  const lite::Tensor* GetTensor(const std::string& name) const;
  const RuntimeProgram& runtime_program() const;

  // This method is disabled in mobile, for unnecessary dependencies required.
  void SaveModel(
      const std::string& dir,
107 108 109
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false);
  void SaveOpKernelInfo(const std::string& model_dir);
Y
Yan Chunwei 已提交
110

M
mapingshuo 已提交
111 112 113 114 115 116 117 118
  // #ifdef LITE_WITH_TRAIN
  //   void Run(const std::vector<framework::Tensor>& tensors) {
  //     FeedVars(tensors);
  //     program_->Run();
  //   }

  //   void FeedVars(const std::vector<framework::Tensor>& tensors);
  // #endif
Y
Yan Chunwei 已提交
119 120 121 122 123 124 125 126

 private:
  Optimizer optimizer_;
  cpp::ProgramDesc program_desc_;
  std::shared_ptr<Scope> scope_;
  const Scope* exec_scope_;
  std::unique_ptr<RuntimeProgram> program_;
  bool program_generated_{false};
127 128
  std::vector<std::string> input_names_;
  std::vector<std::string> output_names_;
Y
Yan Chunwei 已提交
129 130
};

S
sangoly 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143
class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
 public:
  CxxPaddleApiImpl() {}

  /// Create a new predictor from a config.
  void Init(const lite_api::CxxConfig& config);

  std::unique_ptr<lite_api::Tensor> GetInput(int i) override;

  std::unique_ptr<const lite_api::Tensor> GetOutput(int i) const override;

  void Run() override;

144 145
  std::shared_ptr<lite_api::PaddlePredictor> Clone() override;

S
sangoly 已提交
146 147 148 149 150
  std::string GetVersion() const override;

  // get inputs names and get outputs names
  std::vector<std::string> GetInputNames() override;
  std::vector<std::string> GetOutputNames() override;
151 152
  // get param names
  std::vector<std::string> GetParamNames() override;
S
sangoly 已提交
153

154
  // get tensor according to tensor's name
S
sangoly 已提交
155 156
  std::unique_ptr<const lite_api::Tensor> GetTensor(
      const std::string& name) const override;
157 158 159
  // get a mutable tensor according to tensor's name
  std::unique_ptr<lite_api::Tensor> GetMutableTensor(
      const std::string& name) override;
S
sangoly 已提交
160 161 162 163 164

  // Get InputTebsor by name
  std::unique_ptr<lite_api::Tensor> GetInputByName(
      const std::string& name) override;

165 166 167 168
  void SaveOptimizedModel(
      const std::string& model_dir,
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false) override;
S
sangoly 已提交
169 170 171

 private:
  Predictor raw_predictor_;
172 173
  lite_api::CxxConfig config_;
  std::mutex mutex_;
S
sangoly 已提交
174 175
};

Y
Yan Chunwei 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * An executor for training.
 *
 * Usage:
 *
 * CXXTrainer trainer(...);
 * trainer.RunStartupProgram(...);
 * auto exe = BuildMainProgramExecutor(...);
 *
 * for (auto& epoch : epoches) {
 *   auto* tensor0 = exe.GetInput(...);
 *   // fill data for tensor0
 *   exe.Run();
 * }
#ifdef LITE_WITH_X86
class LITE_API CXXTrainer {
 public:
  CXXTrainer(const std::shared_ptr<lite::Scope>& root_scope,
             const std::vector<Place>& valid_places)
      : scope_(root_scope),
        valid_places_(valid_places),
        main_program_executor_(Predictor(scope_)) {}

  // Build the RuntimeProgram cache for the main program. The cache will run
  // multiple times for the epoches.
  // NOTE Just support to execute the 0-th block currently.
  Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc,
                                      int block_id = 0) {
204
    main_program_executor_.Build(desc, valid_places_);
Y
Yan Chunwei 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    return main_program_executor_;
  }

#ifdef LITE_WITH_TRAIN
  Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) {  // NOLINT
    return BuildMainProgramExecutor(*desc.Proto());
  }

  void RunStartupProgram(framework::ProgramDesc& desc) {  // NOLINT
    RunStartupProgram(*desc.Proto());
  }
#endif

  // Run the startup program. It just executes once, no cache needed.
  void RunStartupProgram(const framework::proto::ProgramDesc& desc,
                         int block_id = 0) {
    Predictor exe(scope_);
222
    exe.Build(desc,  valid_places_);
Y
Yan Chunwei 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    exe.Run();
  }

 private:
  std::shared_ptr<lite::Scope> scope_;
  std::vector<Place> valid_places_;

  // The training program.
  Predictor main_program_executor_;
};
#endif
*/

}  // namespace lite
}  // namespace paddle