ocr_attention_test_fpga.cc 5.5 KB
Newer Older
C
chonwhite 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

DEFINE_string(input_file, "", "input_file");

namespace paddle {
namespace lite {

void read_from_file(const std::string& path, float* data, int num) {
  std::ifstream file_stream;
  file_stream.open(path);
  if (!file_stream) {
    exit(-1);
    return;
  }

  for (int i = 0; i < num; ++i) {
    float value = 0;
    file_stream >> value;
    data[i] = value;
  }
}

void chw_to_hwc(float* src, float* dst, int channel, int height, int width) {
  int amount_per_row = width * channel;
  int index = 0;
  for (int c = 0; c < channel; c++) {
    for (int h = 0; h < height; h++) {
      int offset_height = h * amount_per_row;
      for (int w = 0; w < width; w++) {
        int dst_index = offset_height + w * channel + c;
        dst[dst_index] = src[index];
        index = index + 1;
      }
    }
  }
}

void TestModel(const std::vector<Place>& valid_places,
               const Place& preferred_place,
               bool use_npu = false) {
  DeviceInfo::Init();
  DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_HIGH, FLAGS_threads);
  lite::Predictor predictor;

  // predictor.Build(FLAGS_model_dir, "", "", preferred_place, valid_places);
  predictor.Build("", "attention/model", "attention/params", valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 1, 100, 200})));
  auto* data = input_tensor->mutable_data<float>();
  auto item_size = input_tensor->dims().production();
  for (int i = 0; i < item_size; i++) {
    data[i] = 1;
  }

  read_from_file(FLAGS_input_file, data, 100 * 200);
  //=============================================
  auto* init_ids = predictor.GetInput(1);
  init_ids->Resize(DDim(std::vector<DDim::value_type>({1, 1})));
  auto* data_ids = init_ids->mutable_data<float>();
  auto ids_size = init_ids->dims().production();
  for (int i = 0; i < ids_size; i++) {
    data_ids[i] = 0;
  }
  auto lod_ids = init_ids->mutable_lod();
  std::vector<std::vector<uint64_t>> lod_i{{0, 1}, {0, 1}};
  *lod_ids = lod_i;

  //=============================================
  auto* init_scores = predictor.GetInput(2);
  init_scores->Resize(DDim(std::vector<DDim::value_type>({1, 1})));
  auto* data_scores = init_scores->mutable_data<float>();
  auto scores_size = input_tensor->dims().production();
  for (int i = 0; i < scores_size; i++) {
    data_scores[i] = 0;
  }
  auto lod_scores = init_scores->mutable_lod();
  std::vector<std::vector<uint64_t>> lod_s{{0, 1}, {0, 1}};
  *lod_scores = lod_s;

  //=============================================
  auto* position_encoding = predictor.GetInput(3);
  position_encoding->Resize(
      DDim(std::vector<DDim::value_type>({1, 33, 10, 23})));
  auto* position_encoding_data = position_encoding->mutable_data<float>();

  float* temp_data = position_encoding_data;

  for (int i = 0; i < position_encoding->dims().production(); ++i) {
    temp_data[i] = 0;
  }
  int index = 0;
  for (int i = 0; i < 10; i++) {
    for (int row = 0; row < 10; row++) {
      for (int col = 0; col < 23; col++) {
        if (i == row) {
          temp_data[index] = 1.0f;
        } else {
          temp_data[index] = 0.0f;
        }
        index++;
      }
    }
  }
  for (int i = 0; i < 23; i++) {
    for (int row = 0; row < 10; row++) {
      for (int col = 0; col < 23; col++) {
        if (i == col) {
          temp_data[index] = 1.0f;
        } else {
          temp_data[index] = 0.0f;
        }
        index++;
      }
    }
  }
  // chw_to_hwc(temp_data, position_encoding_data, 33, 10, 23);
  // delete[] temp_data;

  // read_from_file("position_encoding.data", position_encoding_data, 33 * 10 *
  // 23);
  auto start = GetCurrentUS();
  for (int i = 0; i < 2; ++i) {
    predictor.Run();
  }

  std::cout << "================== Speed Report ===================";
  std::cout << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  auto* out = predictor.GetOutput(0);

  std::string file = "plate_data/" + FLAGS_input_file.substr(9);
  std::cout << "file:::" << file << std::endl;

  std::ofstream ofs;
  ofs.open(file);
  for (int i = 0; i < out->dims().production(); i++) {
    float value = out->data<float>()[i];
    ofs << value << std::endl;
  }
  ofs.close();
}

TEST(OcrAttention, test_arm) {
  std::vector<Place> valid_places({
      Place{TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC)},
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
  TestModel(valid_places, Place{TARGET(kARM), PRECISION(kFloat)});
}

}  // namespace lite
}  // namespace paddle