context_project.h 13.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <vector>
19 20
#include "lite/backends/x86/math/blas.h"
#include "lite/backends/x86/math/im2col.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#include "lite/core/context.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

/*
 * \brief Context projection concatenates features in adjacent time-steps in
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
 *
 * \param in            Input data.
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
 *
 * \param padding_data  Padding data.
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
 *
 * \param col           Col data.
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
 *
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
 *
 * - Case2:
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
 *
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
 *
 */

template <lite::TargetType Target, typename T>
class ContextProjectFunctor {
 public:
  void operator()(const lite::Context<Target>& context,
                  const lite::Tensor& in,
                  const lite::Tensor* padding_data,
                  bool padding_trainable,
                  const int context_start,
                  const int context_length,
                  const int context_stride,
                  const int up_pad,
                  const int down_pad,
                  lite::Tensor* col) {
    auto lod_level_0 = in.lod()[0];

    math::Im2ColFunctor<math::ColFormat::kOCF, Target, float> im2col_ocf;

    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      if (lod_level_0[i] == lod_level_0[i + 1]) continue;

      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

      // lite::Tensor out_t =
      // col->Slice<float>(static_cast<int>(lod_level_0[i]),
      //                          static_cast<int>(lod_level_0[i + 1]));
      lite::Tensor out_t =
          col->Slice<float>(static_cast<int64_t>(lod_level_0[i]),
                            static_cast<int>(lod_level_0[i + 1]));

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
        lite::Tensor in_t = in.Slice<float>(input_row_begin, input_row_end);

        std::vector<int64_t> output_shape(
            {sequence_height,
             1,
             1,
             context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(output_shape);

        std::vector<int64_t> input_shape(
            {1,
             input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(input_shape);
        im2col_ocf(context, in_t, dilation, stride, padding, &out_t);
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      PADDLE_ENFORCE(padding_data != nullptr);
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        if (lod_level_0[i] == lod_level_0[i + 1]) continue;

        lite::Tensor out_t =
            col->Slice<float>(static_cast<int>(lod_level_0[i]),
                              static_cast<int>(lod_level_0[i + 1]));

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({static_cast<int64_t>(sequence_height) * context_length,
                      sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
            lite::Tensor out_t_sub = out_t.Slice<float>(
                k * context_length, k * context_length + padding_size);
            lite::Tensor w_sub =
                padding_data->Slice<float>(k, k + padding_size);

            out_t_sub.CopyDataFrom(w_sub);

            // framework::TensorCopy(w_sub, context.GetPlace(), context,
            //                      &out_t_sub);
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;

            lite::Tensor out_t_sub = out_t.Slice<float>(
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
            lite::Tensor w_sub = padding_data->Slice<float>(
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            out_t_sub.CopyDataFrom(w_sub);
            // framework::TensorCopy(w_sub, context.GetPlace(), context,
            //                      &out_t_sub);
          }
        }
        out_t.Resize({sequence_height,
                      static_cast<int64_t>(context_length) * sequence_width});
      }
    }
  }
};

template <lite::TargetType Target, typename T>
class ContextProjectGradFunctor {
 public:
  void operator()(const lite::Context<Target>& context,
                  const lite::Tensor& in,
                  bool padding_trainable,
                  const int context_start,
                  const int context_length,
                  const int context_stride,
                  const int up_pad,
                  const int down_pad,
                  bool pad_grad,
                  bool input_grad,
                  lite::Tensor* padding_data,
                  lite::Tensor* col) {
    auto lod_level_0 = in.lod()[0];

    math::Col2ImFunctor<math::ColFormat::kOCF, Target, float> col2im_ocf;

    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];
    auto blas = math::GetBlas<lite::Context<Target>, T>(context);

    if (input_grad) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        if (lod_level_0[i] == lod_level_0[i + 1]) continue;

        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

        lite::Tensor out_t =
            col->Slice<float>(static_cast<int>(lod_level_0[i]),
                              static_cast<int>(lod_level_0[i + 1]));

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
          lite::Tensor in_t = in.Slice<float>(input_row_begin, input_row_end);

          std::vector<int64_t> output_shape(
              {sequence_height,
               1,
               1,
               context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(output_shape);

          std::vector<int64_t> input_shape(
              {1,
               input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(input_shape);

          col2im_ocf(context, out_t, dilation, stride, padding, &in_t);
          out_t.Resize({sequence_height, context_length * sequence_width});
        }
      }
    }
    if (pad_grad) {
      if (padding_trainable) {
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
          if (lod_level_0[i] == lod_level_0[i + 1]) continue;

          lite::Tensor out_t =
              col->Slice<float>(static_cast<int>(lod_level_0[i]),
                                static_cast<int>(lod_level_0[i + 1]));

          sequence_height = static_cast<int>(out_t.dims()[0]);
          out_t.Resize({static_cast<int64_t>(sequence_height) * context_length,
                        sequence_width});

          if (up_pad > 0) {
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
              lite::Tensor out_t_sub = out_t.Slice<float>(
                  k * context_length, k * context_length + padding_size);
              lite::Tensor w_sub =
                  padding_data->Slice<float>(k, k + padding_size);
              blas.AXPY(w_sub.numel(),
                        static_cast<T>(1),
                        out_t_sub.data<T>(),
                        w_sub.data<T>());
            }
          }
          if (down_pad > 0) {
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
            if (context_start >= sequence_height) padding_size = context_length;
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;

              lite::Tensor out_t_sub = out_t.Slice<float>(
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
              lite::Tensor w_sub = padding_data->Slice<float>(
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              blas.AXPY(w_sub.numel(),
                        static_cast<T>(1),
                        out_t_sub.data<T>(),
                        w_sub.data<T>());
            }
          }
          out_t.Resize({sequence_height,
                        static_cast<int64_t>(context_length) * sequence_width});
        }
      }
    }
  }
};

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle