conv_transpose_op.cc 5.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_transpose_op.h"
#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
22 23
#include "lite/backends/npu/bridge/registry.h"
#include "lite/backends/npu/bridge/utils.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

node_map_type ConvTransposeConverter(
    const std::shared_ptr<lite::OpLite> conv_transpose_op,
    const node_map_type& inputs_map) {
  auto scope = conv_transpose_op->scope();
  auto op_info = conv_transpose_op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = UniqueName(op_type);
  LOG(INFO) << "Converting " << op_type << "... ";

  // get input, output and op attributes
  auto input_var_name = op_info->Input("Input").front();
  auto input = scope->FindVar(input_var_name)->GetMutable<lite::Tensor>();
  auto input_shape = input->dims().Vectorize();
  auto filter_var_name = op_info->Input("Filter").front();
  auto filter = scope->FindVar(filter_var_name)->GetMutable<lite::Tensor>();
  auto filter_shape = filter->dims().Vectorize();
  CHECK_EQ(input_shape.size(), 4);
  CHECK_EQ(filter_shape.size(), 4);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
  CHECK_EQ(strides.size(), 2);
  CHECK_EQ(paddings.size(), 2);
  CHECK_EQ(dilations.size(), 2);

  // create deconv node
  auto conv_transpose_node =
      std::make_shared<ge::op::Deconvolution>(unique_op_type);

  // create input sizes node to describe the dimensions of input tensor
  std::vector<int32_t> output_shape;
  output_shape.push_back(input_shape[0]);
  output_shape.push_back(filter_shape[1] * groups);
  for (int i = 0; i < strides.size(); i++) {
    int kernel_ext = dilations[i] * (filter_shape[i + 2] - 1) + 1;
    int output_size =
        (input_shape[i + 2] - 1) * strides[i] + kernel_ext - 2 * paddings[i];
    output_shape.push_back(output_size);
  }
  auto input_sizes_const_node =
      std::make_shared<ge::op::Const>(unique_op_type + "/input_size");
  input_sizes_const_node->set_attr_value(CreateTensorAndFillData(output_shape));
  conv_transpose_node->set_input_input_sizes(*input_sizes_const_node);
  OpList::Global().add(input_sizes_const_node);

  // create filter node
  CHECK(!inputs_map.count(filter_var_name));
  auto filter_const_node = std::make_shared<ge::op::Const>(filter_var_name);
  filter_const_node->set_attr_value(CvtFromLiteTensor(filter));
  conv_transpose_node->set_input_filter(*filter_const_node);
  OpList::Global().add(filter_const_node);

  // set input node
  CHECK(inputs_map.count(input_var_name));
  conv_transpose_node->set_input_x(*inputs_map.at(input_var_name));
  OpList::Global().add(inputs_map.at(input_var_name));

  // set attributes
  conv_transpose_node->set_attr_mode(1);
  conv_transpose_node->set_attr_format(0);    // NCHW
  conv_transpose_node->set_attr_pad_mode(0);  // NOTSET
  conv_transpose_node->set_attr_group(groups);
  conv_transpose_node->set_attr_pad(ge::AttrValue::LIST_INT(
      {paddings[0], paddings[0], paddings[1], paddings[1]}));
  conv_transpose_node->set_attr_dilation(
      ge::AttrValue::LIST_INT({dilations[0], dilations[1]}));
  conv_transpose_node->set_attr_stride(
      ge::AttrValue::LIST_INT({strides[0], strides[1]}));
  conv_transpose_node->set_attr_kernel(
      ge::AttrValue::LIST_INT({filter_shape[2], filter_shape[3]}));
  OpList::Global().add(conv_transpose_node);

  // append add node to add bias if has bias
  std::shared_ptr<ge::Operator> output_node = conv_transpose_node;
  if (HasInputArg(op_info, scope, "Bias")) {
    // create bias node
    auto bias_var_name = op_info->Input("Bias").front();
    CHECK(!inputs_map.count(bias_var_name));
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<lite::Tensor>();
    auto channel_size = bias->dims().production();
    CHECK_EQ(channel_size, filter_shape[1] * groups);
    auto bias_const_node = std::make_shared<ge::op::Const>(bias_var_name);
    bias_const_node->set_attr_value(
        CvtFromLiteTensor(bias, {1, channel_size, 1, 1}));
    OpList::Global().add(bias_const_node);
    // append add node to add bias node
    auto add_node = std::make_shared<ge::op::Add>(unique_op_type + "/add");
    add_node->set_input_x1(*conv_transpose_node);
    add_node->set_input_x2(*bias_const_node);
    OpList::Global().add(add_node);
    output_node = add_node;
  }

  node_map_type outputs_map;
  if (fuse_relu) {
    // append relu node if fuse_relu is true
    auto relu_node =
        std::make_shared<ge::op::Activation>(unique_op_type + "/relu");
    relu_node->set_input_x(*output_node);
    relu_node->set_attr_mode(1);
    OpList::Global().add(relu_node);
    outputs_map[op_info->Output("Output").front()] = relu_node;
  } else {
    outputs_map[op_info->Output("Output").front()] = output_node;
  }
  return outputs_map;
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

REGISTER_NPU_BRIDGE(conv2d_transpose,
                    paddle::lite::npu::bridge::ConvTransposeConverter);