detection_model_test.cc 4.4 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <fstream>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

DEFINE_bool(is_run_model_optimize,
            false,
            "apply model_optimize_tool to model, use optimized model to test");

namespace paddle {
namespace lite_api {

void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
  config.set_preferred_place(Place{TARGET(kX86), PRECISION(kFloat)});
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
  auto predictor = lite_api::CreatePaddlePredictor(config);

  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
    LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::string& model_dir,
         const int repeat,
         const int warmup_times,
         const int thread_num) {
  // set config and create predictor
  lite_api::MobileConfig config;
  config.set_model_dir(model_dir);
  config.set_threads(thread_num);
  if (thread_num == 1) {
    config.set_power_mode(LITE_POWER_HIGH);
  } else {
    config.set_power_mode(LITE_POWER_NO_BIND);
  }

  auto predictor = lite_api::CreatePaddlePredictor(config);

  // set input
  auto input_image = predictor->GetInput(0);
  input_image->Resize({1, 3, 300, 300});
  auto input_image_data = input_image->mutable_data<float>();
  std::ifstream read_file("/data/local/tmp/pjc/ssd_img.txt");
  if (!read_file.is_open()) {
    LOG(INFO) << "read image file fail";
    return;
  }
  auto input_shape = input_image->shape();
  int64_t input_image_size = 1;
  for (auto t : input_shape) {
    input_image_size *= t;
  }
  for (int i = 0; i < input_image_size; i++) {
    read_file >> input_image_data[i];
  }

  // warmup and run
  for (int i = 0; i < warmup_times; ++i) {
    predictor->Run();
  }

  auto start = lite::GetCurrentUS();
  for (int i = 0; i < repeat; ++i) {
    predictor->Run();
  }

  // show result
  auto end = lite::GetCurrentUS();
  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (end - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  auto out = predictor->GetOutput(0);
  auto out_data = out->data<float>();
  LOG(INFO) << "output shape:";
  auto out_shape = out->shape();
  for (auto t : out_shape) {
    LOG(INFO) << t;
  }
  LOG(INFO) << "output data:";
  int output_len = 20;
  for (int i = 0; i < output_len; i++) {
    LOG(INFO) << out_data[i];
  }
}
#endif

}  // namespace lite_api
}  // namespace paddle

TEST(Faster_RCNN, test_arm) {
  std::string save_optimized_model_dir;
  if (FLAGS_is_run_model_optimize) {
    save_optimized_model_dir = FLAGS_model_dir + "opt";
    paddle::lite_api::OutputOptModel(FLAGS_model_dir, save_optimized_model_dir);
  }
  std::string run_model_dir =
      FLAGS_is_run_model_optimize ? save_optimized_model_dir : FLAGS_model_dir;
  paddle::lite_api::Run(
      run_model_dir, FLAGS_repeats, FLAGS_threads, FLAGS_warmup);
}