softmax_impl.h 8.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
17 18 19
#include "lite/backends/x86/cpu_info.h"
#include "lite/backends/x86/jit/helper.h"
#include "lite/backends/x86/jit/kernel_base.h"
20
#include "lite/backends/x86/jit/kernels.h"
21
#include "lite/backends/x86/math/cpu_vec.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#include "lite/core/tensor.h"
#include "lite/fluid/eigen.h"

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

template <typename T,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = lite::fluid::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
    const T kThreshold = static_cast<T>(-64.);
    return x < kThreshold ? kThreshold : x;
  }
};

template <lite::TargetType Target, typename T, bool is_test>
void SoftmaxEigen(const lite::Context<Target>& context,
                  const int axis_dim,
                  const lite::Tensor* X,
                  lite::Tensor* Y) {
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;

  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);
  const int num_remain = num_classes / axis_dim;

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);

  auto shifted_logits = (logits -
                         logits.maximum(along_class)
                             .eval()
                             .reshape(batch_by_one)
                             .broadcast(one_by_class))
                            .unaryExpr(ValueClip<T>());

  softmax.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      shifted_logits.exp();
  softmax.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      (softmax *
       softmax.reshape(batch_axis_remain)
           .sum(along_class)
           .inverse()
           .eval()
           .broadcast(one_axis));
}

template <lite::TargetType Target, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<Target, T, is_test, Enable>::operator()(
    const lite::Context<Target>& context,
    const int axis_dim,
    const lite::Tensor* X,
    lite::Tensor* Y) {
  SoftmaxEigen<lite::Context<Target>, T, is_test>(context, axis_dim, X, Y);
}

template <lite::TargetType Target>
using enable_if_CPU = typename std::enable_if<
    std::is_same<lite::Context<Target>, lite::X86Context>::value>::type;

template <lite::TargetType Target, typename T, bool is_test>
class SoftmaxFunctor<Target, T, is_test, enable_if_CPU<Target>> {
 public:
  void operator()(const lite::Context<Target>& context,
                  const int axis_dim,
                  const lite::Tensor* X,
                  lite::Tensor* Y) {
102
    const auto& in_dims = X->dims();
Y
Yan Chunwei 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && lite::x86::MayIUse(lite::x86::avx)) {
      const T* in_data = X->data<T>();
      auto* out_data = Y->mutable_data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, lite::x86::avx>(
            num_classes, max_val, in_data, out_data);
        vec_clip<T, lite::x86::avx>(
            num_classes, static_cast<T>(-64), out_data, out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, lite::x86::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, lite::x86::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
      SoftmaxEigen<Target, T, is_test>(context, axis_dim, X, Y);
    }
  }
};

template <lite::TargetType Target>
class SoftmaxFunctor<Target, float, true, enable_if_CPU<Target>> {
 public:
  void operator()(const lite::Context<Target>& context,
                  const int axis_dim,
                  const lite::Tensor* X,
                  lite::Tensor* Y) {
143
    const auto& in_dims = X->dims();
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    const float* in_data = X->data<float>();
    float* out_data = Y->mutable_data<float>();
    const int kBatchDim = 0;
    const int kClassDim = 1;
    // 2D data. Batch x C
    auto compute_softmax =
        lite::jit::KernelFuncs<lite::jit::SoftmaxTuple<float>,
                               fluid::CPUPlace>::Cache()
            .At(in_dims[kClassDim]);
    compute_softmax(in_data,
                    out_data,
                    in_dims[kClassDim],
                    in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
  }
};

template <lite::TargetType Target, typename T>
void SoftmaxGradEigen(const lite::Context<Target>& context,
                      const int axis_dim,
                      const lite::Tensor* y,
                      const lite::Tensor* y_grad,
                      lite::Tensor* x_grad) {
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);
  const int num_remain = num_classes / axis_dim;

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);

  auto dot = (softmax * softmax_grad)
                 .reshape(batch_axis_remain)
                 .sum(along_class)
                 .eval()
                 .broadcast(one_axis);
  // logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) *
  // softmax;
  logits_grad.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      (softmax_grad - dot) * softmax;
}

template <lite::TargetType Target, typename T, typename Enable>
void SoftmaxGradFunctor<Target, T, Enable>::operator()(
    const lite::Context<Target>& context,
    const int axis_dim,
    const lite::Tensor* y,
    const lite::Tensor* y_grad,
    lite::Tensor* x_grad) {
  SoftmaxGradEigen<lite::Context<Target>, T>(
      context, axis_dim, y, y_grad, x_grad);
}

template <lite::TargetType Target, typename T>
class SoftmaxGradFunctor<Target, T, enable_if_CPU<Target>> {
 public:
  void operator()(const lite::Context<Target>& context,
                  const int axis_dim,
                  const lite::Tensor* y,
                  const lite::Tensor* y_grad,
                  lite::Tensor* x_grad) {
    auto out_dims = y->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && lite::x86::MayIUse(lite::x86::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->mutable_data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
        vec_mul_reduce<T, lite::x86::avx>(
            num_classes, out_grad, out_data, &scalar);
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, lite::x86::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, lite::x86::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
      SoftmaxGradEigen<Target, T>(context, axis_dim, y, y_grad, x_grad);
    }
  }
};

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle