conv_func.cpp 7.4 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
#include "framework/cl/cl_image_converter.h"
#include "framework/cl/cl_tensor.h"

namespace paddle_mobile {
namespace operators {

template <>
void winograd_transform_weight<4, 3>(framework::CLHelper &cl_helper,
                                     framework::CLImage &weight){};

template <>
void WinogradConv3x3<4, 3>(framework::CLHelper &cl_helper,
                           const ConvParam<GPU_CL> &param) {}

void ConvAddBnRelu(framework::CLHelper &cl_helper,
                   const ConvParam<GPU_CL> &param, bool ifRelu,
                   const CLImage *biase, const CLImage *new_scale,
                   const CLImage *new_bias) {
  auto kernel = cl_helper.KernelAt(0);
  auto default_work_size = cl_helper.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();

  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];

  //  DLOG << " c block " << c_block;
  //  DLOG << " w " << w;
  //  DLOG << " nh " << nh;
  //  DLOG << " stride " << stride;
  //  DLOG << " offset " << offset;
  //  DLOG << " input_c " << input_c;
  //  DLOG << " dilation " << dilation;
  //  DLOG << " input width " << input_width;
  //  DLOG << " input height " << input_height;
  //  DLOG << " output width " << output_width;
  //  DLOG << " output height " << output_height;
  //  DLOG << " input dim " << param.Input()->dims();
  //  DLOG << " output dim " << param.Output()->dims();
  //  DLOG << " filter dim " << param.Filter()->dims();

  cl_int status;
  int index = 0;

  if (param.Filter()->dims()[2] == 1 && param.Filter()->dims()[3] == 1) {
    status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
    CL_CHECK_ERRORS(status);

    int maped_w = maptofactor(w, 4);
    status = clSetKernelArg(kernel, index++, sizeof(int), &maped_w);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
    CL_CHECK_ERRORS(status);

    if (biase) {
      auto bias_mem = biase->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
      CL_CHECK_ERRORS(status);
    }

    if (new_scale && new_bias) {
      auto new_scale_mem = new_scale->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
      CL_CHECK_ERRORS(status);

      auto new_bias_mem = new_bias->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
      CL_CHECK_ERRORS(status);
    }

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &w);
    CL_CHECK_ERRORS(status);

    const size_t work_size[3] = {
        static_cast<const uint32_t>(default_work_size.data()[0]),
        static_cast<const uint32_t>(maped_w),
        static_cast<const uint32_t>(default_work_size.data()[2])};

    status = clEnqueueNDRangeKernel(cl_helper.CLCommandQueue(), kernel,
                                    default_work_size.size(), NULL, work_size,
                                    NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  } else {
    status = clSetKernelArg(kernel, index++, sizeof(int), &c_block);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &w);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &nh);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &input);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &filter);
    CL_CHECK_ERRORS(status);

    if (biase) {
      auto bias_mem = biase->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &bias_mem);
      CL_CHECK_ERRORS(status);
    }

    if (new_scale && new_bias) {
      auto new_scale_mem = new_scale->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_scale_mem);
      CL_CHECK_ERRORS(status);

      auto new_bias_mem = new_bias->GetCLImage();
      status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &new_bias_mem);
      CL_CHECK_ERRORS(status);
    }

    status = clSetKernelArg(kernel, index++, sizeof(cl_mem), &output);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &stride);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &offset);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_c);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &dilation);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &input_height);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_width);
    CL_CHECK_ERRORS(status);

    status = clSetKernelArg(kernel, index++, sizeof(int), &output_height);
    CL_CHECK_ERRORS(status);

    status = clEnqueueNDRangeKernel(
        cl_helper.CLCommandQueue(), kernel, default_work_size.size(), NULL,
        default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }
}

}  // namespace operators
Z
zhaojiaying01 已提交
211
}  // namespace paddle_mobile