fetch_compute.cc 1.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/fpga/fetch_compute.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void FetchCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  // ====================================================
  zynqmp::OutputParam& conv_param = pe_.param();
  auto fetch_list = param.fetch_list;
  if (fetch_list->size() <= static_cast<size_t>(param.col)) {
    fetch_list->resize(param.col + 1);
  }
  Tensor& out = param.fetch_list->at(param.col);
  out.Resize(param.input->dims());
  out.mutable_data<float16>();

  conv_param.input = param.input->ZynqTensor();
  conv_param.output = out.ZynqTensor();

  pe_.init();
  pe_.apply();
}

void FetchCompute::Run() { pe_.dispatch(); }

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    fetch, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::FetchCompute, def)
    .BindInput("X",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .Finalize();