shuffle_channel_op_test.cc 3.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/shuffle_channel_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
Z
zhupengyang 已提交
18 19
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
Y
Yan Chunwei 已提交
20 21 22

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
23
namespace kernels {
Y
Yan Chunwei 已提交
24
namespace npu {
Z
zhupengyang 已提交
25
namespace bridges {
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

void shuffle_channel_ref(
    const std::shared_ptr<operators::ShuffleChannelOpLite> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_data = x->mutable_data<float>();
  auto out_data = out->mutable_data<float>();
  int group = op_info->GetAttr<int>("group");
  auto x_dims = x->dims();

  int n_size = x_dims.production() / x_dims[0];
  int c_size = n_size / x_dims[1];
  for (int n = 0; n < x_dims[0]; n++) {
    int g_num = x_dims[1] / group;
    auto tmp_out_data = out_data;
    for (int g = 0; g < g_num; g++) {
      auto tmp_x_data = x_data + g * c_size;
      for (int i = 0; i < group; i++) {
        std::memcpy(tmp_out_data,
                    tmp_x_data + i * g_num * c_size,
                    c_size * sizeof(float));
        tmp_out_data += c_size;
      }
    }
    x_data += n_size;
    out_data += n_size;
  }
}

void test_shuffle_channel(int bs, int ic, int ih, int iw, int group) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});

  // initialize input&output data
  FillTensor<float>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("shuffle_channel");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("group", group);

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::ShuffleChannelOpLite>(opdesc, &scope);
  LauchOp(op, {x_var_name}, {out_var_name});
  out_ref->CopyDataFrom(*out);

  // execute reference implementation and save to output tensor
  shuffle_channel_ref(op);

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(NPUBridges, softmax) {
  for (auto bs : {1, 4}) {
    for (auto ic : {1, 24, 35}) {
      for (auto ih : {1, 4}) {
        for (auto iw : {1, 4}) {
          for (auto group : {1, 3, 7, 24, 35}) {
            if (ic % group != 0) continue;
            test_shuffle_channel(bs, ic, ih, iw, group);
          }
        }
      }
    }
  }
}

Z
zhupengyang 已提交
110
}  // namespace bridges
Y
Yan Chunwei 已提交
111
}  // namespace npu
Z
zhupengyang 已提交
112
}  // namespace kernels
Y
Yan Chunwei 已提交
113 114 115 116 117
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(shuffle_channel);
USE_NPU_BRIDGE(shuffle_channel);