fc_op.cc 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
Z
zhupengyang 已提交
21 22
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/utils.h"
Y
Yan Chunwei 已提交
23 24 25

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
26
namespace kernels {
Y
Yan Chunwei 已提交
27
namespace npu {
Z
zhupengyang 已提交
28
namespace bridges {
Y
Yan Chunwei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

node_map_type FCConverter(const std::shared_ptr<lite::OpLite> fc_op,
                          const node_map_type& inputs_map) {
  LOG(INFO) << "Converting fc...";
  lite::Scope* scope = fc_op->scope();
  const lite::OpInfo* op_info = fc_op->op_info();
  auto output_node = std::make_shared<ge::op::MatMul>(UniqueName("fc"));

  auto x_var_name = op_info->Input("Input").front();
  auto w_var_name = op_info->Input("W").front();

  int in_num_col_dims = op_info->GetAttr<int>("in_num_col_dims");
  auto* xtensor = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto* wtensor = scope->FindVar(w_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = xtensor->dims();
  auto w_dims = wtensor->dims();

  CHECK_GE(x_dims.size(), 2UL);
  CHECK_EQ(w_dims.size(), 2UL);

  int m = x_dims.Slice(0, in_num_col_dims).production();
  int k = x_dims.Slice(in_num_col_dims, x_dims.size()).production();
  int n = w_dims[1];

  CHECK(inputs_map.count(x_var_name));
  CHECK(!inputs_map.count(w_var_name));

  LOG(INFO) << "m:" << m << ",n:" << n << ",k:" << k;
  LOG(INFO) << "x_var_name:" << x_var_name
            << ", is data: " << inputs_map.count(x_var_name);
  LOG(INFO) << "w_var_name:" << w_var_name
            << ", is data: " << inputs_map.count(w_var_name);

  auto xsrc = inputs_map.at(x_var_name);
  auto reshapex = std::make_shared<ge::op::Reshape>(x_var_name + "_reshape");
  reshapex->set_input_tensor(*xsrc);
  reshapex->set_attr_shape({m, k});
  reshapex->set_attr_axis(0);
  OpList::Global().add(xsrc);
  OpList::Global().add(reshapex);
  output_node->set_input_x(*reshapex);

  auto wconst = std::make_shared<ge::op::Const>(w_var_name);
  ge::TensorDesc wdesc(ge::Shape({k, n}), ge::FORMAT_NCHW, ge::DT_FLOAT);
  auto size = wdesc.GetShape().GetShapeSize();
  CHECK_EQ(size, w_dims.production());
  ge::TensorPtr ptensor = std::make_shared<ge::Tensor>();
  ptensor->SetTensorDesc(wdesc);
  auto* pdata = reinterpret_cast<uint8_t*>(wtensor->mutable_data<float>());
  ptensor->SetData(pdata, size * sizeof(float));
  wconst->set_attr_value(ptensor);
  OpList::Global().add(wconst);
  output_node->set_input_w(*wconst);

  if (HasInputArg(op_info, scope, "Bias")) {
    auto b_var_name = op_info->Input("Bias").front();
    auto* btensor = scope->FindVar(b_var_name)->GetMutable<lite::Tensor>();

    LOG(INFO) << "b_var_name:" << b_var_name
              << ", is data: " << inputs_map.count(b_var_name);
    CHECK(!inputs_map.count(b_var_name));
    CHECK_EQ(btensor->numel(), n);

    auto bconst = std::make_shared<ge::op::Const>(b_var_name);
    ge::TensorDesc bdesc(
        ge::Shape({1, n, 1, 1}), ge::FORMAT_NCHW, ge::DT_FLOAT);
    auto size = bdesc.GetShape().GetShapeSize();
    CHECK_EQ(size, n);
    ge::TensorPtr ptensor = std::make_shared<ge::Tensor>();
    ptensor->SetTensorDesc(bdesc);
    auto* pdata = reinterpret_cast<uint8_t*>(btensor->mutable_data<float>());
    ptensor->SetData(pdata, size * sizeof(float));
    bconst->set_attr_value(ptensor);
    OpList::Global().add(bconst);
    output_node->set_input_bias(*bconst);
    output_node->set_attr_has_bias(ge::AttrValue::BOOL{true});
  }

  OpList::Global().add(output_node);

  node_map_type outputs_map;
  outputs_map[op_info->Output("Out").front()] = output_node;
  return outputs_map;
}

Z
zhupengyang 已提交
114
}  // namespace bridges
Y
Yan Chunwei 已提交
115
}  // namespace npu
Z
zhupengyang 已提交
116
}  // namespace kernels
Y
Yan Chunwei 已提交
117 118 119
}  // namespace lite
}  // namespace paddle

Z
zhupengyang 已提交
120
REGISTER_NPU_BRIDGE(fc, paddle::lite::kernels::npu::bridges::FCConverter);