pool_3x3.cpp 33.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef POOL_OP
W
wangliu 已提交
16 17 18
#ifdef _OPENMP
#include <omp.h>
#endif
W
wangliu 已提交
19
#include "framework/tensor.h"
20
#include "operators/math/pool_3x3.h"
Z
zhaojiaying01 已提交
21
#if __ARM_NEON
22 23 24
#include <arm_neon.h>
#endif  // __ARM_NEON
#include <climits>
W
wangliu 已提交
25 26 27 28 29 30 31
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::max;
using std::min;
using std::vector;
W
wangliu 已提交
32
void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
Z
zhaojiaying01 已提交
33
#if __ARM_NEON
Y
yangfei 已提交
34 35
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int input_channel = static_cast<int>(input->dims()[1]);
W
wangliu 已提交
36

Y
yangfei 已提交
37 38 39 40
  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);
W
wangliu 已提交
41

Y
yangfei 已提交
42
  const int hxw = input_height * input_width;
W
wangliu 已提交
43

Y
yangfei 已提交
44
  const int l = input_height;
W
wangliu 已提交
45

W
wangliu 已提交
46
  const float coef = 1.0 / 9.0;
Y
yangfei 已提交
47 48
  const float coef1 = 1.0 / 6.0;
  const float coef2 = 1.0 / 4.0;
W
wangliu 已提交
49

Y
yangfei 已提交
50 51
  float32x4_t v_coef = vdupq_n_f32(coef);
  float32x4_t v_coef1 = vdupq_n_f32(coef1);
W
wangliu 已提交
52

Y
yangfei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
    for (int c = 0; c < input_channel; c++) {
      const float *input_data = input->data<float>() + c * hxw;
      float *output_data = output->data<float>() + c * hxw;

      for (int i = 1; i < output_height - 1; i++) {
        float *output_ptr;
        float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3, tmp4,
            tmp5, out0;
        for (int m = 1; m < output_width - 4; m += 4) {
          output_ptr = output_data + i * output_width + m;
          in0 = vld1q_f32(input_data + (i - 1) * input_width + m - 1);
          in1 = vld1q_f32(input_data + (i - 1) * input_width + m + 3);
          in2 = vld1q_f32(input_data + i * input_width + m - 1);
          in3 = vld1q_f32(input_data + i * input_width + m + 3);
          in4 = vld1q_f32(input_data + (i + 1) * input_width + m - 1);
          in5 = vld1q_f32(input_data + (i + 1) * input_width + m + 3);
W
wangliu 已提交
71 72 73 74 75 76 77 78

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

Y
yangfei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
          out0 = in0;
          out0 = vaddq_f32(out0, tmp0);
          out0 = vaddq_f32(out0, tmp1);
          out0 = vaddq_f32(out0, in2);
          out0 = vaddq_f32(out0, tmp2);
          out0 = vaddq_f32(out0, tmp3);
          out0 = vaddq_f32(out0, in4);
          out0 = vaddq_f32(out0, tmp4);
          out0 = vaddq_f32(out0, tmp5);

          vst1q_f32(output_ptr, vmulq_f32(out0, v_coef));
        }
        int m;
        for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
W
wangliu 已提交
93 94
        }

Y
yangfei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        for (int j = m; j < output_width - 1; j++) {
          output_data[i * output_width + j] =
              input_data[(i - 1) * input_width + j - 1] +
              input_data[(i - 1) * input_width + j] +
              input_data[(i - 1) * input_width + j + 1] +
              input_data[(i)*input_width + j - 1] +
              input_data[(i)*input_width + j] +
              input_data[(i)*input_width + j + 1] +
              input_data[(i + 1) * input_width + j - 1] +
              input_data[(i + 1) * input_width + j] +
              input_data[(i + 1) * input_width + j + 1];
          output_data[i * output_width + j] =
              output_data[i * output_width + j] * coef;
        }
      }
W
wangliu 已提交
110

Y
yangfei 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      output_data[0] =
          input_data[0] + input_data[1] + input_data[l] + input_data[l + 1];
      output_data[l - 1] = input_data[l - 2] + input_data[l - 1] +
                           input_data[2 * l - 2] + input_data[2 * l - 1];
      output_data[(l - 1) * l] =
          input_data[(l - 2) * l] + input_data[(l - 2) * l + 1] +
          input_data[(l - 1) * l] + input_data[(l - 1) * l + 1];
      output_data[l * l - 1] = input_data[(l - 2) * (l + 1)] +
                               input_data[(l - 2) * (l + 1) + 1] +
                               input_data[l * l - 2] + input_data[l * l - 1];
      output_data[0] = output_data[0] * coef2;
      output_data[l - 1] = output_data[l - 1] * coef2;
      output_data[(l - 1) * l] = output_data[(l - 1) * l] * coef2;
      output_data[l * l - 1] = output_data[l * l - 1] * coef2;

      for (int i = 1; i < l - 1; ++i) {
        output_data[i * l] = input_data[i * l - l] + input_data[i * l - l + 1] +
                             input_data[i * l] + input_data[i * l + 1] +
                             input_data[i * l + l] + input_data[i * l + l + 1];

        output_data[i * l + l - 1] =
            input_data[i * l + l - 1 - l - 1] + input_data[i * l + l - 1 - l] +
            input_data[i * l + l - 1 - 1] + input_data[i * l + l - 1] +
            input_data[i * l + l - 1 + l - 1] + input_data[i * l + l - 1 + l];
        output_data[i * l] = output_data[i * l] * coef1;
        output_data[i * l + l - 1] = output_data[i * l + l - 1] * coef1;
      }
W
wangliu 已提交
138

Y
yangfei 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      int m;
      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr = output_data + m;
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + m - 1);
        in1 = vld1q_f32(input_data + m + 3);
        in2 = vld1q_f32(input_data + input_width + m - 1);
        in3 = vld1q_f32(input_data + input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = in0;
        out0 = vaddq_f32(out0, tmp0);
        out0 = vaddq_f32(out0, tmp1);
        out0 = vaddq_f32(out0, in2);
        out0 = vaddq_f32(out0, tmp2);
        out0 = vaddq_f32(out0, tmp3);

        vst1q_f32(output_ptr, vmulq_f32(out0, v_coef1));
      }

      for (m = 1; (m + 3) < output_width - 1; m += 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[j] = input_data[j - 1] + input_data[j] + input_data[j + 1] +
                         input_data[input_width + j - 1] +
                         input_data[input_width + j] +
                         input_data[input_width + j + 1];
        output_data[j] = output_data[j] * coef1;
      }

      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr =
            output_data + (output_height - 1) * output_width + m;

        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + (output_height - 2) * input_width + m - 1);
        in1 = vld1q_f32(input_data + (output_height - 2) * input_width + m + 3);
        in2 = vld1q_f32(input_data + (output_height - 1) * input_width + m - 1);
        in3 = vld1q_f32(input_data + (output_height - 1) * input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = in0;
        out0 = vaddq_f32(out0, tmp0);
        out0 = vaddq_f32(out0, tmp1);
        out0 = vaddq_f32(out0, in2);
        out0 = vaddq_f32(out0, tmp2);
        out0 = vaddq_f32(out0, tmp3);

        vst1q_f32(output_ptr, vmulq_f32(out0, v_coef1));
      }
      for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[(output_height - 1) * input_width + j] =
            input_data[(output_height - 2) * input_width + j - 1] +
            input_data[(output_height - 2) * input_width + j] +
            input_data[(output_height - 2) * input_width + j + 1] +
            input_data[(output_height - 1) * input_width + j - 1] +
            input_data[(output_height - 1) * input_width + j] +
            input_data[(output_height - 1) * input_width + j + 1];
        output_data[(output_height - 1) * output_width + j] =
            output_data[(output_height - 1) * output_width + j] * coef1;
W
wangliu 已提交
205 206 207
      }
    }
  }
Y
yangfei 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

//  const int batch_size = input->dims()[0];
//
//  const int h_in = input->dims()[2];
//
//  const int w_in = input->dims()[3];
//
//  const int output_channels = output->dims()[1];
//
//  const int h_out = output->dims()[2];
//  const int w_out = output->dims()[3];
//  const int outputdata_channel_stride = h_out * w_out;
//  const int inputdata_channel_stride = h_in * w_in;
//  const int input_batch_stride = output_channels * inputdata_channel_stride;
//  const int output_batch_stride = output_channels *
//  outputdata_channel_stride; float *out_data = output->data<float>(); const
//  float *input_data = input->data<float>();
//
//  const float coef = 1.0 / 9.0;
//  for (int k = 0; k < batch_size; ++k) {
//#pragma omp parallel for
//    for (int c = 0; c < output_channels; ++c) {
//      const float *input_seg = input_data + c * inputdata_channel_stride;
//      float *output_seg = out_data + c * outputdata_channel_stride;
//      // four corner point
//      output_seg[0] = (input_seg[0] + input_seg[1] + input_seg[w_in] +
//                       input_seg[w_in + 1]) *
//                      coef;
//      output_seg[w_out - 1] =
//          (input_seg[w_in - 2] + input_seg[w_in - 1] + input_seg[w_in * 2 -
//          2] +
//           input_seg[2 * w_in - 1]) *
//          coef;
//      output_seg[(h_out - 1) * w_out] =
//          (input_seg[(h_in - 2) * w_in] + input_seg[(h_in - 2) * w_in + 1] +
//           input_seg[(h_in - 1) * w_in] + input_seg[(h_in - 1) * w_in + 1])
//           *
//          coef;
//      output_seg[h_out * w_out - 1] =
//          (input_seg[h_in * w_in - 1] + input_seg[h_in * w_in - 2] +
//           input_seg[(h_in - 1) * w_in - 1] +
//           input_seg[(h_in - 1) * w_in - 2]) *
//          coef;
//      // left side & right side
//      for (int i = 1; i < h_in - 1; ++i) {
//        output_seg[i * w_out] =
//            (input_seg[i * w_in - w_in] + input_seg[i * w_in - w_in + 1] +
//             input_seg[i * w_in] + input_seg[i * w_in + 1] +
//             input_seg[i * w_in + w_in] + input_seg[i * w_in + w_in + 1]) *
//            coef;
//        output_seg[i * w_out + w_out - 1] =
//            (input_seg[i * w_in - w_in + w_in - 2] +
//             input_seg[i * w_in - w_in + 1 + w_in - 2] +
//             input_seg[i * w_in + w_in - 2] +
//             input_seg[i * w_in + 1 + w_in - 2] +
//             input_seg[i * w_in + w_in + w_in - 2] +
//             input_seg[i * w_in + w_in + 1 + w_in - 2]) *
//            coef;
//      }
//      // top 1 row & bottom 1 row
//      const float *input_tmp = input_seg;
//
//      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
//          tmp3, tmp4, tmp5, sum, out0;
//      float32x4_t v_coef = vdupq_n_f32(coef);
//      in0 = vld1q_f32(input_tmp);
//      in2 = vld1q_f32(input_tmp + w_in);
//      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
//      in4 = vld1q_f32(input_tmp_end);
//      in6 = vld1q_f32(input_tmp_end + w_in);
//      int c_mid = w_out - 2;
//      auto output_ptr = output_seg + 1;
//      for (; c_mid > 3; c_mid -= 4) {
//        in1 = vld1q_f32(input_tmp + 4);
//        in3 = vld1q_f32(input_tmp + w_in + 4);
//
//        tmp0 = vextq_f32(in0, in1, 1);
//        tmp1 = vextq_f32(in0, in1, 2);
//
//        tmp2 = vextq_f32(in2, in3, 1);
//        tmp3 = vextq_f32(in2, in3, 2);
//
//        sum = vaddq_f32(in0, tmp0);
//        sum = vaddq_f32(sum, tmp1);
//        sum = vaddq_f32(sum, in2);
//        sum = vaddq_f32(sum, tmp2);
//        sum = vaddq_f32(sum, tmp3);
//
//        vst1q_f32(output_ptr, vmulq_f32(sum, v_coef));
//
//        in5 = vld1q_f32(input_tmp_end + 4);
//        in7 = vld1q_f32(input_tmp_end + w_in + 4);
//
//        tmp0 = vextq_f32(in4, in5, 1);
//        tmp1 = vextq_f32(in4, in5, 2);
//        tmp2 = vextq_f32(in6, in7, 1);
//        tmp3 = vextq_f32(in6, in7, 2);
//
//        sum = vaddq_f32(in0, tmp0);
//        sum = vaddq_f32(sum, tmp1);
//        sum = vaddq_f32(sum, in2);
//        sum = vaddq_f32(sum, tmp2);
//        sum = vaddq_f32(sum, tmp3);
//
//        vst1q_f32(output_ptr + (h_out - 1) * w_out, vmulq_f32(sum, v_coef));
//
//        // can optimize to each 8 stride.
//        input_tmp += 4;
//        input_tmp_end += 4;
//        output_ptr += 4;
//        in0 = in1;
//        in2 = in3;
//        in4 = in5;
//        in6 = in7;
//      }
//      // top right remain
//      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
//      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
//
//      tmp0 = vextq_f32(in0, pad0, 1);
//      tmp1 = vextq_f32(in0, pad0, 2);
//      tmp2 = vextq_f32(in2, pad1, 2);
//      tmp3 = vextq_f32(in2, pad1, 2);
//
//      sum = vaddq_f32(in0, tmp0);
//      sum = vaddq_f32(sum, tmp1);
//      sum = vaddq_f32(sum, in2);
//      sum = vaddq_f32(sum, tmp2);
//      sum = vaddq_f32(sum, tmp3);
//      out0 = vmulq_f32(sum, v_coef);
//
//      for (int i = 0; i < c_mid; ++i) {
//        if (i == 0) {
//          vst1q_lane_f32(output_ptr + i, out0, 0);
//        }
//        if (i == 1) {
//          vst1q_lane_f32(output_ptr + i, out0, 1);
//        }
//        if (i == 2) {
//          vst1q_lane_f32(output_ptr + i, out0, 2);
//        }
//      }
//
//      // bottom_right remain
//      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
//      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
//
//      tmp0 = vextq_f32(in4, pad2, 1);
//      tmp1 = vextq_f32(in4, pad2, 2);
//      tmp2 = vextq_f32(in6, pad3, 2);
//      tmp3 = vextq_f32(in6, pad3, 2);
//
//      sum = vaddq_f32(in4, tmp0);
//      sum = vaddq_f32(sum, tmp1);
//      sum = vaddq_f32(sum, in6);
//      sum = vaddq_f32(sum, tmp2);
//      sum = vaddq_f32(sum, tmp3);
//      out0 = vmulq_f32(sum, v_coef);
//
//      for (int i = 0; i < c_mid; ++i) {
//        if (i == 0) {
//          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 0);
//        }
//        if (i == 1) {
//          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 1);
//        }
//        if (i == 2) {
//          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 2);
//        }
//      }
//      // mid
//      for (int j = 0; j < h_out - 2; ++j) {
//        output_ptr = output_seg + w_out * (j + 1) + 1;
//        input_tmp = input_seg + j * w_in;
//
//        in0 = vld1q_f32(input_tmp);
//        in2 = vld1q_f32(input_tmp + w_in);
//        in4 = vld1q_f32(input_tmp + 2 * w_in);
//        c_mid = w_out - 2;
//        for (; c_mid > 3; c_mid -= 4) {
//          in1 = vld1q_f32(input_tmp + 4);
//          in3 = vld1q_f32(input_tmp + w_in + 4);
//          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);
//
//          tmp0 = vextq_f32(in0, in1, 1);
//          tmp1 = vextq_f32(in0, in1, 2);
//          tmp2 = vextq_f32(in2, in3, 1);
//          tmp3 = vextq_f32(in2, in3, 2);
//          tmp4 = vextq_f32(in4, in5, 1);
//          tmp5 = vextq_f32(in4, in5, 2);
//
//          sum = vaddq_f32(in0, tmp0);
//          sum = vaddq_f32(sum, tmp1);
//          sum = vaddq_f32(sum, in2);
//          sum = vaddq_f32(sum, tmp2);
//          sum = vaddq_f32(sum, tmp3);
//          sum = vaddq_f32(sum, in4);
//          sum = vaddq_f32(sum, tmp4);
//          sum = vaddq_f32(sum, tmp5);
//
//          out0 = vmulq_f32(sum, v_coef);
//          vst1q_f32(output_ptr, out0);
//          output_ptr += 4;
//          input_tmp += 4;
//          in0 = in1;
//          in2 = in3;
//          in4 = in5;
//        }
//        // mid remain
//        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
//        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
//        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
//
//        tmp0 = vextq_f32(in0, pad0, 1);
//        tmp1 = vextq_f32(in0, pad0, 2);
//        tmp2 = vextq_f32(in2, pad1, 1);
//        tmp3 = vextq_f32(in2, pad1, 2);
//        tmp4 = vextq_f32(in4, pad2, 1);
//        tmp5 = vextq_f32(in4, pad2, 2);
//
//        sum = vaddq_f32(in0, tmp0);
//        sum = vaddq_f32(sum, tmp1);
//        sum = vaddq_f32(sum, in2);
//        sum = vaddq_f32(sum, tmp2);
//        sum = vaddq_f32(sum, tmp3);
//        sum = vaddq_f32(sum, in4);
//        sum = vaddq_f32(sum, tmp4);
//        sum = vaddq_f32(sum, tmp5);
//        out0 = vmulq_f32(sum, v_coef);
//
//        for (int i = 0; i < c_mid; ++i) {
//          if (i == 0) {
//            vst1q_lane_f32(output_ptr + i, out0, 0);
//          }
//          if (i == 1) {
//            vst1q_lane_f32(output_ptr + i, out0, 1);
//          }
//          if (i == 2) {
//            vst1q_lane_f32(output_ptr + i, out0, 2);
//          }
//        }
//      }
//      //      input_data += inputdata_channel_stride;
//      //      out_data += outputdata_channel_stride;
//    }
//    input_data += input_batch_stride;
//    out_data += output_batch_stride;
//  }
W
wangliu 已提交
456 457 458 459
#endif
}

void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
Z
zhaojiaying01 已提交
460
#if __ARM_NEON
W
wangliu 已提交
461 462 463 464 465 466 467 468 469 470 471 472
  const int batch_size = input->dims()[0];

  const int h_in = input->dims()[2];

  const int w_in = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int h_out = output->dims()[2];
  const int w_out = output->dims()[3];
  const int outputdata_channel_stride = h_out * w_out;
  const int inputdata_channel_stride = h_in * w_in;
W
wangliu 已提交
473 474
  const int input_batch_stride = output_channels * inputdata_channel_stride;
  const int output_batch_stride = output_channels * outputdata_channel_stride;
W
wangliu 已提交
475 476 477
  float *out_data = output->data<float>();
  const float *input_data = input->data<float>();
  for (int k = 0; k < batch_size; ++k) {
W
wangliu 已提交
478
#pragma omp parallel for
W
wangliu 已提交
479
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
480 481
      const float *input_seg = input_data + c * inputdata_channel_stride;
      float *output_seg = out_data + c * outputdata_channel_stride;
W
wangliu 已提交
482
      // four corner point
W
wangliu 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496
      output_seg[0] = std::max(std::max(input_seg[0], input_seg[1]),
                               std::max(input_seg[w_in], input_seg[w_in + 1]));
      output_seg[w_out - 1] =
          std::max(std::max(input_seg[w_in - 2], input_seg[w_in - 1]),
                   std::max(input_seg[w_in * 2 - 2], input_seg[2 * w_in - 1]));
      output_seg[(h_out - 1) * w_out] =
          std::max(std::max(input_seg[(h_in - 2) * w_in],
                            input_seg[(h_in - 2) * w_in + 1]),
                   std::max(input_seg[(h_in - 1) * w_in],
                            input_seg[(h_in - 1) * w_in + 1]));
      output_seg[h_out * w_out - 1] = std::max(
          std::max(input_seg[(h_in - 1) * w_in - 1],
                   input_seg[(h_in - 1) * w_in - 2]),
          std::max(input_seg[h_in * w_in - 1], input_seg[h_in * w_in - 2]));
W
wangliu 已提交
497 498
      // left side & right side
      for (int i = 1; i < h_in - 1; ++i) {
W
wangliu 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        float max1 = std::max(input_seg[i * w_in - w_in],
                              input_seg[i * w_in - w_in + 1]);
        float max2 = std::max(input_seg[i * w_in], input_seg[i * w_in + 1]);
        float max3 = std::max(input_seg[i * w_in + w_in],
                              input_seg[i * w_in + w_in + 1]);
        output_seg[i * w_out] = std::max(std::max(max1, max2), max3);

        max1 = std::max(input_seg[i * w_in - w_in + w_in - 2],
                        input_seg[i * w_in - w_in + 1 + w_in - 2]);
        max2 = std::max(input_seg[i * w_in + w_in - 2],
                        input_seg[i * w_in + 1 + w_in - 2]);
        max3 = std::max(input_seg[i * w_in + w_in + w_in - 2],
                        input_seg[i * w_in + w_in + 1 + w_in - 2]);
        output_seg[i * w_out + w_out - 1] =
            std::max(std::max(max1, max2), max3);
W
wangliu 已提交
514 515
      }
      // top 1 row & bottom 1 row
W
wangliu 已提交
516
      const float *input_tmp = input_seg;
W
wangliu 已提交
517 518 519 520 521 522 523 524 525

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, max;
      in0 = vld1q_f32(input_tmp);
      in2 = vld1q_f32(input_tmp + w_in);
      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
      in4 = vld1q_f32(input_tmp_end);
      in6 = vld1q_f32(input_tmp_end + w_in);
      int c_mid = w_out - 2;
W
wangliu 已提交
526
      auto output_ptr = output_seg + 1;
W
wangliu 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
        in3 = vld1q_f32(input_tmp + w_in + 4);

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr, max);

        in5 = vld1q_f32(input_tmp_end + 4);
        in7 = vld1q_f32(input_tmp_end + w_in + 4);

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        max = vmaxq_f32(in4, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in6);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr + (h_out - 1) * w_out, max);

        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }
      // top right remain
W
wangliu 已提交
570 571
      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
W
wangliu 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      max = vmaxq_f32(in0, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in2);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, max, 2);
        }
      }

      // bottom_right remain
W
wangliu 已提交
597 598
      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
W
wangliu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      max = vmaxq_f32(in4, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in6);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 2);
        }
      }
      // mid
      for (int j = 0; j < h_out - 2; ++j) {
W
wangliu 已提交
624 625
        output_ptr = output_seg + (j + 1) * w_out + 1;
        input_tmp = input_seg + j * w_in;
W
wangliu 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

        in0 = vld1q_f32(input_tmp);
        in2 = vld1q_f32(input_tmp + w_in);
        in4 = vld1q_f32(input_tmp + 2 * w_in);
        c_mid = w_out - 2;
        for (; c_mid > 3; c_mid -= 4) {
          in1 = vld1q_f32(input_tmp + 4);
          in3 = vld1q_f32(input_tmp + w_in + 4);
          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          max = vmaxq_f32(in0, tmp0);
          max = vmaxq_f32(max, tmp1);
          max = vmaxq_f32(max, in2);
          max = vmaxq_f32(max, tmp2);
          max = vmaxq_f32(max, tmp3);
          max = vmaxq_f32(max, in4);
          max = vmaxq_f32(max, tmp4);
          max = vmaxq_f32(max, tmp5);

          vst1q_f32(output_ptr, max);
          output_ptr += 4;
          input_tmp += 4;
          in0 = in1;
          in2 = in3;
          in4 = in5;
        }
        // mid remain
W
wangliu 已提交
660 661 662
        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 3) * w_in - 1]);
W
wangliu 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

        tmp0 = vextq_f32(in0, pad0, 1);
        tmp1 = vextq_f32(in0, pad0, 2);
        tmp2 = vextq_f32(in2, pad1, 1);
        tmp3 = vextq_f32(in2, pad1, 2);
        tmp4 = vextq_f32(in4, pad2, 1);
        tmp5 = vextq_f32(in4, pad2, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);
        max = vmaxq_f32(max, in4);
        max = vmaxq_f32(max, tmp4);
        max = vmaxq_f32(max, tmp5);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, max, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, max, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, max, 2);
          }
        }
      }
W
wangliu 已提交
692 693
      //      input_data += inputdata_channel_stride;
      //      out_data += outputdata_channel_stride;
W
wangliu 已提交
694
    }
W
wangliu 已提交
695 696
    input_data += input_batch_stride;
    out_data += output_batch_stride;
W
wangliu 已提交
697
  }
698 699
#else

W
wangliu 已提交
700 701
#endif
}
W
wangliu 已提交
702 703 704

void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
Z
zhaojiaying01 已提交
705
#if __ARM_NEON
W
wangliu 已提交
706 707 708 709 710 711 712 713 714 715
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
716 717 718 719 720
  //  const int _kernel_size = 3;
  const int stride = strides[0];
  //  const int stride_width = strides[1];
  const int padding = paddings[0];
  //  const int padding_width = paddings[1];
W
wangliu 已提交
721 722 723 724 725 726 727 728 729
  const float negative_max = -INT_MAX;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
W
wangliu 已提交
730
  const float *pos1, *output_ptr;
W
wangliu 已提交
731 732
  int hstart, wstart, hend, wend;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
733
#pragma omp parallel for
W
wangliu 已提交
734
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
735 736
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
737
      for (int ph = 0; ph < output_height; ph++) {
738 739 740
        int hstart = ph * stride - padding;
        int hend = min(hstart + 3, input_height);
        hstart = max(hstart, 0);
W
wangliu 已提交
741
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
742
          int wstart = pw * stride - padding;
743
          int wend = min(wstart + 3, input_width);
W
wangliu 已提交
744
          wstart = max(wstart, 0);
W
wangliu 已提交
745 746 747 748
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
749 750 751 752 753

          if (hend - hstart != 3 || wend - wstart != 3) {
            float max_value = -INT_MAX;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
754
                float value = input_seg[h * input_width + w];
W
wangliu 已提交
755 756 757 758 759
                if (value > max_value) {
                  max_value = value;
                }
              }
            }
W
wangliu 已提交
760
            output_seg[ph * output_width + pw] = max_value;
W
wangliu 已提交
761
          } else {
762 763 764 765 766 767 768 769 770 771 772 773
#if __aarch64__
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos1 + input_width);
            const float32x4_t data3 = vld1q_f32(pos1 + 2 * input_width);
            const float32x4_t max_data =
                vmaxq_f32(vmaxq_f32(data1, data2), data3);
            float32x2_t res =
                vpmax_f32(vget_high_f32(vsetq_lane_f32(-INT_MAX, max_data, 3)),
                          vget_low_f32(max_data));
            res = vpmax_f32(res, res);
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0);
#else
W
wangliu 已提交
774 775 776 777 778 779 780 781 782 783 784
            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vmax.f32 q1, q1, q2            \n\t"
                "vmax.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[negative_max]         \n\t"
                "vpmax.f32  d6, d4, d5            \n\t"
                "vpmax.f32  d7, d6, d6             \n\t"
                "vst1.32 {d7[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
785
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max)
                : "memory", "q1", "q2", "q3", "q4");
#endif
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
#endif
}

void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
Z
zhaojiaying01 已提交
802
#if __ARM_NEON
W
wangliu 已提交
803 804 805 806 807 808 809 810 811 812
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
813 814
  const int stride = strides[0];
  const int padding = paddings[0];
W
wangliu 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827

  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();
  const float zero = 0;
  const float nine = 1.0 / 9.0;
  const float nine_ptr[] = {nine, nine};

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
828
#pragma omp parallel for
W
wangliu 已提交
829
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
830 831
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
832 833
      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
834 835 836 837
          int hstart = ph * stride - padding;
          int wstart = pw * stride - padding;
          int hend = min(hstart + 3, input_height + padding);
          int wend = min(wstart + 3, input_width + padding);
W
wangliu 已提交
838 839 840 841
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
Y
yangfei 已提交
842

W
wangliu 已提交
843 844 845 846
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          float *output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
847 848 849 850 851

          if (hend - hstart != 3 || wend - wstart != 3) {
            float sum = 0;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
852
                sum += input_seg[h * input_width + w];
W
wangliu 已提交
853 854
              }
            }
Y
yangfei 已提交
855 856
            output_seg[ph * output_width + pw] =
                sum / ((hend - hstart) * (wend - wstart) * 1.0);
W
wangliu 已提交
857
          } else {
858 859
#if __aarch64__
#else
W
wangliu 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vadd.f32 q1, q1, q2            \n\t"
                "vadd.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[zero]         \n\t"
                "vpadd.f32  d6, d4, d5            \n\t"
                "vpadd.f32  d6, d6, d6             \n\t"
                "vld1.f32 d7, [%[nine_ptr]]!        \n\t"
                "vmul.f32 d6,d7                     \n\t"
                "vst1.32 {d6[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
873
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
874 875 876 877
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero),
                  [nine_ptr] "r"(nine_ptr)
                : "memory", "r6", "q1", "q2", "q3", "q4");
878
#endif
W
wangliu 已提交
879 880 881 882 883 884 885 886 887
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);
            const float32x4_t sum_data =
                vaddq_f32(vaddq_f32(data1, data3), data2);
            float32x2_t res =
                vpadd_f32(vget_high_f32(vsetq_lane_f32(0, sum_data, 3)),
                          vget_low_f32(sum_data));
            res = vpadd_f32(res, res);
W
wangliu 已提交
888
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0) / 9.0;
W
wangliu 已提交
889 890 891 892 893 894 895
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
896
#else
W
wangliu 已提交
897 898 899 900 901 902 903
#endif
}
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile

#endif