pybind.cc 12.0 KB
Newer Older
S
sangoly 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/python/pybind/pybind.h"
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <cstring>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/cxx_api.h"
29
#include "lite/api/opt_base.h"
S
sangoly 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#endif

#include "lite/api/light_api.h"
#include "lite/api/paddle_api.h"
#include "lite/core/tensor.h"

namespace py = pybind11;

namespace paddle {
namespace lite {
namespace pybind {

using lite_api::Tensor;
using lite_api::CxxConfig;
using lite_api::MobileConfig;
using lite_api::PowerMode;
using lite_api::TargetType;
using lite_api::PrecisionType;
using lite_api::DataLayoutType;
using lite_api::Place;
50
using lite_api::MLUCoreVersion;
S
sangoly 已提交
51
using lite::LightPredictorImpl;
52
using lite_api::OptBase;
S
sangoly 已提交
53 54 55 56

#ifndef LITE_ON_TINY_PUBLISH
using lite::CxxPaddleApiImpl;
static void BindLiteCxxPredictor(py::module *m);
57 58 59 60 61 62 63 64
void BindLiteOpt(py::module *m) {
  py::class_<OptBase> opt_base(*m, "Opt");
  opt_base.def(py::init<>())
      .def("set_model_dir", &OptBase::SetModelDir)
      .def("set_modelset_dir", &OptBase::SetModelSetDir)
      .def("set_model_file", &OptBase::SetModelFile)
      .def("set_param_file", &OptBase::SetParamFile)
      .def("set_valid_places", &OptBase::SetValidPlaces)
65
      .def("set_optimize_out", &OptBase::SetOptimizeOut)
66
      .def("set_model_type", &OptBase::SetModelType)
67 68
      .def("record_model_info", &OptBase::RecordModelInfo)
      .def("run", &OptBase::Run)
69 70
      .def("run_optimize", &OptBase::RunOptimize)
      .def("help", &OptBase::PrintHelpInfo)
71
      .def("executablebin_help", &OptBase::PrintExecutableBinHelpInfo)
72 73
      .def("print_supported_ops", &OptBase::PrintSupportedOps)
      .def("display_kernels_info", &OptBase::DisplayKernelsInfo)
74 75
      .def("print_all_ops", &OptBase::PrintAllOps)
      .def("check_if_model_supported", &OptBase::CheckIfModelSupported);
76
}
S
sangoly 已提交
77 78 79 80 81 82 83
#endif
static void BindLiteLightPredictor(py::module *m);
static void BindLiteCxxConfig(py::module *m);
static void BindLiteMobileConfig(py::module *m);
static void BindLitePowerMode(py::module *m);
static void BindLitePlace(py::module *m);
static void BindLiteTensor(py::module *m);
84
static void BindLiteMLUCoreVersion(py::module *m);
S
sangoly 已提交
85 86 87 88 89 90 91

void BindLiteApi(py::module *m) {
  BindLiteCxxConfig(m);
  BindLiteMobileConfig(m);
  BindLitePowerMode(m);
  BindLitePlace(m);
  BindLiteTensor(m);
92
  BindLiteMLUCoreVersion(m);
S
sangoly 已提交
93 94 95 96
#ifndef LITE_ON_TINY_PUBLISH
  BindLiteCxxPredictor(m);
#endif
  BindLiteLightPredictor(m);
97 98
// Global helper methods
#ifndef LITE_ON_TINY_PUBLISH
S
sangoly 已提交
99 100 101 102 103 104
  m->def("create_paddle_predictor",
         [](const CxxConfig &config) -> std::unique_ptr<CxxPaddleApiImpl> {
           auto x = std::unique_ptr<CxxPaddleApiImpl>(new CxxPaddleApiImpl());
           x->Init(config);
           return std::move(x);
         });
105
#endif
S
sangoly 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  m->def("create_paddle_predictor",
         [](const MobileConfig &config) -> std::unique_ptr<LightPredictorImpl> {
           auto x =
               std::unique_ptr<LightPredictorImpl>(new LightPredictorImpl());
           x->Init(config);
           return std::move(x);
         });
}

void BindLiteCxxConfig(py::module *m) {
  py::class_<CxxConfig> cxx_config(*m, "CxxConfig");

  cxx_config.def(py::init<>())
      .def("set_model_dir", &CxxConfig::set_model_dir)
      .def("model_dir", &CxxConfig::model_dir)
      .def("set_model_file", &CxxConfig::set_model_file)
      .def("model_file", &CxxConfig::model_file)
      .def("set_param_file", &CxxConfig::set_param_file)
      .def("param_file", &CxxConfig::param_file)
      .def("set_valid_places", &CxxConfig::set_valid_places)
      .def("set_model_buffer", &CxxConfig::set_model_buffer)
      .def("model_from_memory", &CxxConfig::model_from_memory);
#ifdef LITE_WITH_ARM
  cxx_config.def("set_threads", &CxxConfig::set_threads)
      .def("threads", &CxxConfig::threads)
      .def("set_power_mode", &CxxConfig::set_power_mode)
      .def("power_mode", &CxxConfig::power_mode);
#endif
134 135 136 137 138 139 140 141
#ifdef LITE_WITH_MLU
  cxx_config.def("set_mlu_core_version", &CxxConfig::set_mlu_core_version)
      .def("set_mlu_core_number", &CxxConfig::set_mlu_core_number)
      .def("set_mlu_input_layout", &CxxConfig::set_mlu_input_layout)
      .def("set_mlu_use_first_conv", &CxxConfig::set_mlu_use_first_conv)
      .def("set_mlu_first_conv_mean", &CxxConfig::set_mlu_first_conv_mean)
      .def("set_mlu_first_conv_std", &CxxConfig::set_mlu_first_conv_std);
#endif
S
sangoly 已提交
142 143 144 145 146 147 148
}

// TODO(sangoly): Should MobileConfig be renamed to LightConfig ??
void BindLiteMobileConfig(py::module *m) {
  py::class_<MobileConfig> mobile_config(*m, "MobileConfig");

  mobile_config.def(py::init<>())
149 150
      .def("set_model_from_file", &MobileConfig::set_model_from_file)
      .def("set_model_from_buffer", &MobileConfig::set_model_from_buffer)
S
sangoly 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      .def("set_model_dir", &MobileConfig::set_model_dir)
      .def("model_dir", &MobileConfig::model_dir)
      .def("set_model_buffer", &MobileConfig::set_model_buffer)
      .def("model_from_memory", &MobileConfig::model_from_memory);
#ifdef LITE_WITH_ARM
  mobile_config.def("set_threads", &MobileConfig::set_threads)
      .def("threads", &MobileConfig::threads)
      .def("set_power_mode", &MobileConfig::set_power_mode)
      .def("power_mode", &MobileConfig::power_mode);
#endif
}

void BindLitePowerMode(py::module *m) {
  py::enum_<PowerMode>(*m, "PowerMode")
      .value("LITE_POWER_HIGH", PowerMode::LITE_POWER_HIGH)
      .value("LITE_POWER_LOW", PowerMode::LITE_POWER_LOW)
      .value("LITE_POWER_FULL", PowerMode::LITE_POWER_FULL)
      .value("LITE_POWER_NO_BIND", PowerMode::LITE_POWER_NO_BIND)
      .value("LITE_POWER_RAND_HIGH", PowerMode::LITE_POWER_RAND_HIGH)
      .value("LITE_POWER_RAND_LOW", PowerMode::LITE_POWER_RAND_LOW);
}

173 174 175 176 177 178
void BindLiteMLUCoreVersion(py::module *m) {
  py::enum_<MLUCoreVersion>(*m, "MLUCoreVersion")
      .value("LITE_MLU_220", MLUCoreVersion::MLU_220)
      .value("LITE_MLU_270", MLUCoreVersion::MLU_270);
}

S
sangoly 已提交
179 180 181 182 183 184 185 186 187 188
void BindLitePlace(py::module *m) {
  // TargetType
  py::enum_<TargetType>(*m, "TargetType")
      .value("Host", TargetType::kHost)
      .value("X86", TargetType::kX86)
      .value("CUDA", TargetType::kCUDA)
      .value("ARM", TargetType::kARM)
      .value("OpenCL", TargetType::kOpenCL)
      .value("FPGA", TargetType::kFPGA)
      .value("NPU", TargetType::kNPU)
189
      .value("MLU", TargetType::kMLU)
190
      .value("RKNPU", TargetType::kRKNPU)
H
hong19860320 已提交
191
      .value("APU", TargetType::kAPU)
S
sangoly 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      .value("Any", TargetType::kAny);

  // PrecisionType
  py::enum_<PrecisionType>(*m, "PrecisionType")
      .value("FP16", PrecisionType::kFP16)
      .value("FP32", PrecisionType::kFloat)
      .value("INT8", PrecisionType::kInt8)
      .value("INT16", PrecisionType::kInt16)
      .value("INT32", PrecisionType::kInt32)
      .value("INT64", PrecisionType::kInt64)
      .value("BOOL", PrecisionType::kBool)
      .value("Any", PrecisionType::kAny);

  // DataLayoutType
  py::enum_<DataLayoutType>(*m, "DataLayoutType")
      .value("NCHW", DataLayoutType::kNCHW)
      .value("NHWC", DataLayoutType::kNHWC)
209 210 211
      .value("ImageDefault", DataLayoutType::kImageDefault)
      .value("ImageFolder", DataLayoutType::kImageFolder)
      .value("ImageNW", DataLayoutType::kImageNW)
S
sangoly 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
      .value("Any", DataLayoutType::kAny);

  // Place
  py::class_<Place>(*m, "Place")
      .def(py::init<TargetType, PrecisionType, DataLayoutType, int16_t>(),
           py::arg("target"),
           py::arg("percision") = PrecisionType::kFloat,
           py::arg("layout") = DataLayoutType::kNCHW,
           py::arg("device") = 0)
      .def("is_valid", &Place::is_valid);
}

void BindLiteTensor(py::module *m) {
  auto data_size_func = [](const std::vector<int64_t> &shape) -> int64_t {
    int64_t res = 1;
    for (size_t i = 0; i < shape.size(); i++) {
      res *= shape[i];
    }
    return res;
  };

  py::class_<Tensor> tensor(*m, "Tensor");

  tensor.def("resize", &Tensor::Resize)
      .def("shape", &Tensor::shape)
      .def("target", &Tensor::target)
      .def("precision", &Tensor::precision)
      .def("lod", &Tensor::lod)
      .def("set_lod", &Tensor::SetLoD);

#define DO_GETTER_ONCE(data_type__, name__)                           \
  tensor.def(#name__, [=](Tensor &self) -> std::vector<data_type__> { \
    std::vector<data_type__> data;                                    \
    auto shape = self.shape();                                        \
    int64_t num = data_size_func(shape);                              \
    data.resize(num);                                                 \
    self.CopyToCpu<data_type__>(data.data());                         \
    return data;                                                      \
  });

#define DO_SETTER_ONCE(data_type__, name__)                              \
  tensor.def(                                                            \
      #name__,                                                           \
      [](Tensor &self,                                                   \
         const std::vector<data_type__> &data,                           \
         TargetType type = TargetType::kHost) {                          \
        if (type == TargetType::kHost || type == TargetType::kARM) {     \
          self.CopyFromCpu<data_type__, TargetType::kHost>(data.data()); \
        } else if (type == TargetType::kCUDA) {                          \
          self.CopyFromCpu<data_type__, TargetType::kCUDA>(data.data()); \
        }                                                                \
      },                                                                 \
      py::arg("data"),                                                   \
      py::arg("type") = TargetType::kHost);

#define DATA_GETTER_SETTER_ONCE(data_type__, name__) \
  DO_SETTER_ONCE(data_type__, set_##name__##_data)   \
  DO_GETTER_ONCE(data_type__, name__##_data)

  DATA_GETTER_SETTER_ONCE(int8_t, int8);
272 273 274 275 276 277 278 279 280 281 282 283 284 285
#ifdef LITE_WITH_MLU
  tensor.def("set_uint8_data",
             [](Tensor &self,
                const std::vector<uint8_t> &data,
                TargetType type = TargetType::kHost) {
               if (type == TargetType::kHost) {
                 self.CopyFromCpu<uint8_t, TargetType::kHost>(data.data());
               }
             },
             py::arg("data"),
             py::arg("type") = TargetType::kHost);

  DO_GETTER_ONCE(uint8_t, "uint8_data");
#endif
S
sangoly 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  DATA_GETTER_SETTER_ONCE(int32_t, int32);
  DATA_GETTER_SETTER_ONCE(float, float);
#undef DO_GETTER_ONCE
#undef DO_SETTER_ONCE
#undef DATA_GETTER_SETTER_ONCE
}

#ifndef LITE_ON_TINY_PUBLISH
void BindLiteCxxPredictor(py::module *m) {
  py::class_<CxxPaddleApiImpl>(*m, "CxxPredictor")
      .def(py::init<>())
      .def("get_input", &CxxPaddleApiImpl::GetInput)
      .def("get_output", &CxxPaddleApiImpl::GetOutput)
      .def("run", &CxxPaddleApiImpl::Run)
      .def("get_version", &CxxPaddleApiImpl::GetVersion)
      .def("save_optimized_model",
           [](CxxPaddleApiImpl &self, const std::string &output_dir) {
             self.SaveOptimizedModel(output_dir,
                                     lite_api::LiteModelType::kNaiveBuffer);
           });
}
#endif

void BindLiteLightPredictor(py::module *m) {
  py::class_<LightPredictorImpl>(*m, "LightPredictor")
      .def(py::init<>())
      .def("get_input", &LightPredictorImpl::GetInput)
      .def("get_output", &LightPredictorImpl::GetOutput)
      .def("run", &LightPredictorImpl::Run)
315
      .def("get_version", &LightPredictorImpl::GetVersion);
S
sangoly 已提交
316 317 318 319 320
}

}  // namespace pybind
}  // namespace lite
}  // namespace paddle