multiclass_nms_arm_func.h 9.8 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef MULTICLASSNMS_OP
#pragma once

#include <algorithm>
#include <map>
#include <utility>
#include <vector>
Z
zhaojiaying01 已提交
22 23
#include "framework/tensor.h"
#include "operators/op_param.h"
E
eclipsess 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

namespace paddle_mobile {
namespace operators {

constexpr int kOutputDim = 6;
constexpr int kBBoxSize = 4;

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <typename T>
Z
zhaojiaying01 已提交
94 95
static inline void NMSFast(const framework::Tensor& bbox,
                           const framework::Tensor& scores,
E
eclipsess 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                           const T score_threshold, const T nms_threshold,
                           const T eta, const int64_t top_k,
                           std::vector<int>* selected_indices) {
  // The total boxes for each instance.
  int64_t num_boxes = bbox.dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox.dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices;
  GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

  selected_indices->clear();
  T adaptive_threshold = nms_threshold;
  const T* bbox_data = bbox.data<T>();

  while (sorted_indices.size() != 0) {
    const int idx = sorted_indices.front().second;
    bool keep = true;
    for (size_t k = 0; k < selected_indices->size(); ++k) {
      if (keep) {
        const int kept_idx = (*selected_indices)[k];
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, true);
        keep = overlap <= adaptive_threshold;
      } else {
        break;
      }
    }
    if (keep) {
      selected_indices->push_back(idx);
    }
    sorted_indices.erase(sorted_indices.begin());
    if (keep && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
}

template <typename T>
Z
zhaojiaying01 已提交
137 138
void MultiClassNMS(const framework::Tensor& scores,
                   const framework::Tensor& bboxes,
E
eclipsess 已提交
139 140 141 142 143 144 145 146 147
                   std::map<int, std::vector<int>>* indices, int* num_nmsed_out,
                   const int& background_label, const int& nms_top_k,
                   const int& keep_top_k, const T& nms_threshold,
                   const T& nms_eta, const T& score_threshold) {
  int64_t class_num = scores.dims()[0];
  int64_t predict_dim = scores.dims()[1];
  int num_det = 0;
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
Z
zhaojiaying01 已提交
148
    framework::Tensor score = scores.Slice(c, c + 1);
E
eclipsess 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    /// [c] is key
    NMSFast<float>(bboxes, score, score_threshold, nms_threshold, nms_eta,
                   nms_top_k, &((*indices)[c]));
    num_det += (*indices)[c].size();
  }

  *num_nmsed_out = num_det;
  const T* scores_data = scores.data<T>();
  if (keep_top_k > -1 && num_det > keep_top_k) {
    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : *indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        // PADDLE_ENFORCE_LT(idx, predict_dim);
        score_index_pairs.push_back(
            std::make_pair(sdata[idx], std::make_pair(label, idx)));
      }
    }
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                     SortScorePairDescend<std::pair<int, int>>);
    score_index_pairs.resize(keep_top_k);

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (size_t j = 0; j < score_index_pairs.size(); ++j) {
      int label = score_index_pairs[j].second.first;
      int idx = score_index_pairs[j].second.second;
      new_indices[label].push_back(idx);
    }
    new_indices.swap(*indices);
    *num_nmsed_out = keep_top_k;
  }
}

template <typename T>
Z
zhaojiaying01 已提交
188 189
void MultiClassOutput(const framework::Tensor& scores,
                      const framework::Tensor& bboxes,
E
eclipsess 已提交
190
                      const std::map<int, std::vector<int>>& selected_indices,
Z
zhaojiaying01 已提交
191
                      framework::Tensor* outs) {
E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  int predict_dim = scores.dims()[1];
  auto* scores_data = scores.data<T>();
  auto* bboxes_data = bboxes.data<T>();
  auto* odata = outs->data<T>();

  int count = 0;
  for (const auto& it : selected_indices) {
    /// one batch
    int label = it.first;
    const T* sdata = scores_data + label * predict_dim;
    const std::vector<int>& indices = it.second;
    for (size_t j = 0; j < indices.size(); ++j) {
      int idx = indices[j];
      const T* bdata = bboxes_data + idx * kBBoxSize;
      odata[count * kOutputDim] = label;           // label
      odata[count * kOutputDim + 1] = sdata[idx];  // score
      // xmin, ymin, xmax, ymax
      std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T));
      count++;
    }
  }
}

template <typename P>
void MultiClassNMSCompute(const MultiClassNMSParam& param) {
  const auto* input_bboxes = param.InputBBoxes();
  const auto& input_bboxes_dims = input_bboxes->dims();

  const auto* input_scores = param.InputScores();
  const auto& input_scores_dims = input_scores->dims();

  auto* outs = param.Out();
  auto background_label = param.BackGroundLabel();
  auto nms_top_k = param.NMSTopK();
  auto keep_top_k = param.KeepTopK();
  auto nms_threshold = param.NMSThreshold();
  auto nms_eta = param.NMSEta();
  auto score_threshold = param.ScoreThreshold();

  int64_t batch_size = input_scores_dims[0];
  int64_t class_num = input_scores_dims[1];
  int64_t predict_dim = input_scores_dims[2];
  int64_t box_dim = input_bboxes_dims[2];

  std::vector<std::map<int, std::vector<int>>> all_indices;
  std::vector<size_t> batch_starts = {0};
  for (int64_t i = 0; i < batch_size; ++i) {
Z
zhaojiaying01 已提交
239
    framework::Tensor ins_score = input_scores->Slice(i, i + 1);
E
eclipsess 已提交
240 241
    ins_score.Resize({class_num, predict_dim});

Z
zhaojiaying01 已提交
242
    framework::Tensor ins_boxes = input_bboxes->Slice(i, i + 1);
E
eclipsess 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    ins_boxes.Resize({predict_dim, box_dim});

    std::map<int, std::vector<int>> indices;
    int num_nmsed_out = 0;
    MultiClassNMS<float>(ins_score, ins_boxes, &indices, &num_nmsed_out,
                         background_label, nms_top_k, keep_top_k, nms_threshold,
                         nms_eta, score_threshold);
    all_indices.push_back(indices);
    batch_starts.push_back(batch_starts.back() + num_nmsed_out);
  }

  int num_kept = batch_starts.back();
  if (num_kept == 0) {
    float* od = outs->mutable_data<float>({1});
    od[0] = -1;
  } else {
    outs->mutable_data<float>({num_kept, kOutputDim});
    for (int64_t i = 0; i < batch_size; ++i) {
Z
zhaojiaying01 已提交
261
      framework::Tensor ins_score = input_scores->Slice(i, i + 1);
E
eclipsess 已提交
262 263
      ins_score.Resize({class_num, predict_dim});

Z
zhaojiaying01 已提交
264
      framework::Tensor ins_boxes = input_bboxes->Slice(i, i + 1);
E
eclipsess 已提交
265 266 267 268 269
      ins_boxes.Resize({predict_dim, box_dim});

      int64_t s = batch_starts[i];
      int64_t e = batch_starts[i + 1];
      if (e > s) {
Z
zhaojiaying01 已提交
270
        framework::Tensor out = outs->Slice(s, e);
E
eclipsess 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        MultiClassOutput<float>(ins_score, ins_boxes, all_indices[i], &out);
      }
    }
  }

  //            framework::LoD lod;
  //            lod.emplace_back(batch_starts);
  //
  //            outs->set_lod(lod);
}

}  // namespace operators
}  // namespace paddle_mobile

#endif