softmax_kernel.cpp 4.2 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

Z
zhangyang 已提交
17 18
#include "operators/kernel/softmax_kernel.h"
#include "operators/kernel/central-arm-func/softmax_arm_func.h"
19

H
hanbuhe 已提交
20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
25 26 27
  auto input = const_cast<LoDTensor *>(param->InputX());
  auto dims = framework::vectorize(input->dims());

28 29
  auto out = param->Out();
  out->Resize(framework::make_ddim(dims));
30 31 32 33 34 35 36 37 38 39 40

  PADDLE_MOBILE_ENFORCE(input->dims().size() == 4,
                        "Softmax should have 4-order input");

  auto channel = dims[3];
  if (channel == 1) {  // This input is generated by FC op, dims = [N C 1 1]
    PADDLE_MOBILE_ENFORCE(dims[2] == 1, "Softmax input must come from FC op");
    dims[3] = dims[1];
    dims[1] = 1;
  }
  input->Resize(framework::make_ddim(dims));
41 42 43 44
  if ((channel == 2) && (input->type() == type_id<int8_t>())) {
    auto input_ptr = input->data<int8_t>();
    float Si = input->scale[0];
    int16_t slope = fpga::fp32_2_fp16(Si / 127);
45
    out->mutable_data<int8_t>(framework::make_ddim(dims));
46
    fpga::format_ofm(out);
47 48 49 50 51 52 53 54 55
    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP16;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)input->dims()[1];
    args.image.width = (uint32_t)input->dims()[2];
    args.image.channels = (uint32_t)input->dims()[3];
56
    args.output.address = out->data<int8_t>();
57 58
    args.output.scale_address = out->scale;
    args.output.activation.activation_type = fpga::SOFTMAX;
59
    args.output.activation.leaky_relu_negative_slope = slope;
60
    param->SetFpgaArgs(args);
61 62 63 64 65 66
  } else if (input->type() == type_id<int8_t>()) {
    auto float_input_x = param->float_input_x_;
    float_input_x = std::make_shared<Tensor>();
    float_input_x->Resize(input->dims());
    float_input_x->init(type_id<float>().hash_code());
    fpga::format_ofm(float_input_x.get());
67 68
    out->mutable_data<float>(framework::make_ddim(dims));
    fpga::format_ofm(out);
69
  } else {
70 71
    out->mutable_data<float>(framework::make_ddim(dims));
    fpga::format_ofm(out);
72 73
  }

H
hanbuhe 已提交
74 75 76 77
  return true;
}

template <>
78
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
79
  auto *in_x = (param.InputX());
80 81 82 83 84 85
  auto dims = in_x->dims();
  auto n = dims[0];
  auto h = dims[1];
  auto w = dims[2];
  auto c = dims[3];
  if ((c == 2) && (in_x->type() == type_id<int8_t>())) {
86
    fpga::PerformBypass(param.FpgaArgs());
87 88 89 90 91 92
  } else if (in_x->type() == type_id<int8_t>()) {
    auto in_data = in_x->data<int8_t>();
    float Si = in_x->scale[0];
    Tensor *out = param.Out();
    out->Resize(
        {in_x->dims()[0], out->dims()[1], out->dims()[2], out->dims()[3]});
93

94 95 96 97 98 99
    auto float_input_x = param.float_input_x_;
    auto float_input_x_data = float_input_x->data<float>();
    int dataNum = n * h * fpga::align_to_x(w * c, IMAGE_ALIGNMENT);
    for (int i = 0; i < dataNum; i++) {
      float_input_x_data[i] = in_data[i] * Si / 127;
    }
100 101 102
    math::SoftmaxFuntor<CPU, float>()(float_input_x.get(), out);
    auto out_data = out->data<float>();
    fpga::fpga_flush(out_data, dataNum * sizeof(float));
103
  } else {
104 105 106
    Tensor *out = param.Out();
    out->Resize(
        {in_x->dims()[0], out->dims()[1], out->dims()[2], out->dims()[3]});
107
    math::SoftmaxFuntor<CPU, float>()(in_x, out);
108
    int dataNum = n * h * fpga::align_to_x(w * c, IMAGE_ALIGNMENT);
109 110
    auto out_data = out->data<float>();
    fpga::fpga_flush(out_data, dataNum * sizeof(float));
111
  }
H
hanbuhe 已提交
112 113 114 115 116 117
}

}  // namespace operators
}  // namespace paddle_mobile

#endif