unet_test.cc 4.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM
TEST(unet, test) {
  DeviceInfo::Init();
31
  DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_HIGH, FLAGS_threads);
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  lite::Predictor predictor;
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)},
                                   Place{TARGET(kARM), PRECISION(kFloat)}});

  predictor.Build(
      FLAGS_model_dir, Place{TARGET(kARM), PRECISION(kFloat)}, valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 512, 512})));
  auto* data = input_tensor->mutable_data<float>();
  auto item_size = input_tensor->dims().production();
  for (int i = 0; i < item_size; i++) {
    data[i] = 1;
  }

  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  // std::vector<float> results({0.00078033, 0.00083865, 0.00060029, 0.00057083,
  //                            0.00070094, 0.00080584, 0.00044525, 0.00074907,
  //                            0.00059774, 0.00063654});
  //
  std::vector<std::vector<float>> results;
  // i = 1
  results.emplace_back(std::vector<float>(
      {0.9134332,  0.9652493,  0.959906,   0.96601194, 0.9704161,  0.973321,
       0.9763035,  0.9788776,  0.98090196, 0.9823532,  0.9830632,  0.98336476,
       0.9837605,  0.98430413, 0.9848935,  0.9854547,  0.9858877,  0.9862335,
       0.9865361,  0.9867324,  0.98686767, 0.9870094,  0.98710895, 0.98710257,
       0.98703253, 0.98695105, 0.98681927, 0.98661137, 0.98637575, 0.98613656,
       0.9858899,  0.98564225, 0.9853931,  0.9851323,  0.98487836, 0.9846578,
       0.9844529,  0.9842441,  0.98405427, 0.9839205,  0.98382735, 0.98373055,
       0.9836299,  0.9835474,  0.9834818,  0.9834427,  0.98343164, 0.9834163,
       0.9833809,  0.9833255,  0.9832343,  0.9831207,  0.98302484, 0.9829579,
       0.9829039,  0.98283756, 0.9827444,  0.98264474, 0.9825466,  0.98243505,
       0.982312,   0.98218083, 0.98203814, 0.981895,   0.9817609,  0.9816264,
       0.9814932,  0.9813706,  0.98124915, 0.9811211,  0.98099536, 0.9808748,
       0.98075336, 0.9806301,  0.98050594, 0.98038554, 0.980272,   0.9801562,
       0.9800356,  0.9799207,  0.9798147,  0.97971845, 0.97963905, 0.9795745,
       0.9795107,  0.97943753, 0.9793595,  0.97928876, 0.97922987, 0.9791764,
       0.97912955, 0.9790941,  0.9790663,  0.9790414,  0.9790204,  0.9790055,
       0.97899526, 0.9789867,  0.9789797,  0.9789748}));
  auto* out = predictor.GetOutput(0);
  ASSERT_EQ(out->dims().size(), 4);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 21);

  int step = 1;
  for (int i = 0; i < results.size(); ++i) {
    for (int j = 0; j < results[i].size(); ++j) {
      EXPECT_NEAR(out->data<float>()[j * step + (out->dims()[1] * i)],
                  results[i][j],
                  1e-6);
    }
  }
}
#endif

}  // namespace lite
}  // namespace paddle