matmul_op.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace xpu {

int MatmulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();

  auto y_name = op_info->Input("Y").front();
  auto y_type = kernel->GetInputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
  auto y = scope->FindMutableTensor(y_name);
  auto y_dims = y->dims();

  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
52 53
  auto out = scope->FindMutableTensor(out_name);
  auto out_dims = out->dims();
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

  auto transpose_x = op_info->GetAttr<bool>("transpose_X");
  auto transpose_y = op_info->GetAttr<bool>("transpose_Y");
  auto alpha = op_info->GetAttr<float>("alpha");

  // X node
  std::shared_ptr<xtcl::xExpr> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }

  // Y node
  std::shared_ptr<xtcl::xExpr> y_node = nullptr;
  if (graph->HasNode(y_name)) {
    y_node = graph->GetNode(y_name);
  } else {
    y_node = graph->AddNode(y_name, y_dims);
  }

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  // Matmul node
  if (x_dims.size() > 2 && y_dims.size() >= 2) {
    // x: [B, ..., M, K], y: [B, ..., K, N], out: [B, ..., M, N]
    // x: [B, M, K], y: [K, N], out: [B, M, N]
    // Reshape and transposed X node
    if (x_dims.size() != 3) {
      auto m = static_cast<int>(x_dims[x_dims.size() - 2]);
      auto k = static_cast<int>(x_dims[x_dims.size() - 1]);
      x_node =
          graph->AddNode(x_name + "/reshape",
                         graph->builder_.CreateReshape(*x_node, {-1, m, k}));
      if (transpose_x) {
        x_node =
            graph->AddNode(x_name + "/reshape/transpose",
                           graph->builder_.CreateTranspose(*x_node, {0, 2, 1}));
      }
    }
    // Reshape and transposed Y node
    if (y_dims.size() != 3) {
      auto k = static_cast<int>(y_dims[y_dims.size() - 2]);
      auto n = static_cast<int>(y_dims[y_dims.size() - 1]);
      y_node =
          graph->AddNode(y_name + "/reshape",
                         graph->builder_.CreateReshape(*y_node, {-1, k, n}));
      if (!transpose_y) {
        y_node =
            graph->AddNode(y_name + "/reshape/transpose",
                           graph->builder_.CreateTranspose(*y_node, {0, 2, 1}));
      }
    }
    // Matmul node
    auto matmul_node = graph->AddNode(
        out_name, graph->builder_.CreateBatchMatmul(*x_node, *y_node));
    if (fabs(alpha - 1) > 1e-6f) {
      matmul_node = graph->AddNode(
          out_name, graph->builder_.CreateScale(*matmul_node, alpha));
    }
    if (out_dims.size() != 3) {
      graph->AddNode(out_name,
                     graph->builder_.CreateReshape(
                         *matmul_node, CvtShape<xtcl::Integer>(out_dims)));
    }
  } else if (x_dims.size() == 2 && y_dims.size() == 2) {
    // x: [M, K], y: [K, N], out: [M, N]
    if (transpose_x) {
      x_node = graph->AddNode(x_name + "/transpose",
                              graph->builder_.CreateTranspose(*x_node, {1, 0}));
    }
    auto matmul_node = graph->AddNode(
        out_name,
        graph->builder_.CreateMatmul2D(*x_node, *y_node, transpose_y));
    if (fabs(alpha - 1) > 1e-6f) {
      matmul_node = graph->AddNode(
          out_name, graph->builder_.CreateScale(*matmul_node, alpha));
    }
  } else if (x_dims.size() == 1 && y_dims.size() == 1) {
    // x: [K], y: [K], out: [1]
    // x: [M], y: [N], x_transpose: true, y_transpose: true, out: [M, N]
    LOG(FATAL) << "[XPU] Not supported.";
    return FAILED;
  }
  return REBUILD_WHEN_SHAPE_CHANGED;
137 138 139 140 141 142 143 144 145 146
}

}  // namespace xpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(XPU,
                         matmul,
                         paddle::lite::subgraph::xpu::MatmulConverter);