gemm_int8_compute_test.cc 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
23
#include "lite/core/profile/timer.h"
24 25 26 27
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"

typedef paddle::lite::Tensor Tensor;
28
using paddle::lite::profile::Timer;
29

30 31 32 33 34 35 36
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "gemm: M");
DEFINE_int32(N, 512, "gemm: N");
DEFINE_int32(K, 512, "gemm: K");

DEFINE_bool(traA, false, "gemm: A transpose");
DEFINE_bool(traB, false, "gemm: B transpose");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

bool test_gemm_int8(bool tra,
                    bool trb,
                    int m,
                    int n,
                    int k,
                    bool has_bias,
                    bool has_relu,
                    int cls,
                    int ths) {
  Tensor ta;
  Tensor tb;
  Tensor tc_int8;
  Tensor tc_fp32;
  Tensor tc_basic_int8;
  Tensor tc_basic_fp32;
  Tensor tbias;

  ta.Resize({m, k});
  tb.Resize({k, n});
  tc_int8.Resize({m, n});
  tc_fp32.Resize({m, n});
  tc_basic_int8.Resize({m, n});
  tc_basic_fp32.Resize({m, n});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kInt8));
  tb.set_precision(PRECISION(kInt8));
  tc_int8.set_precision(PRECISION(kInt8));
  tc_fp32.set_precision(PRECISION(kFloat));
  tc_basic_int8.set_precision(PRECISION(kInt8));
  tc_basic_fp32.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -127, 127);
  fill_tensor_rand(tb, -127, 127);
  fill_tensor_rand(tbias, -1.f, 1.f);

  std::vector<float> scale_a(static_cast<size_t>(m), 1.f / 127);
  std::vector<float> scale_b = {1.f / 127};
  std::vector<float> scale_c = {k / 127.f};
  std::vector<float> scale_merge_fp32(static_cast<size_t>(m));
  std::vector<float> scale_merge_int8(static_cast<size_t>(m));
  for (int j = 0; j < m; ++j) {
    scale_merge_fp32[j] = scale_a[j] * scale_b[0];
    scale_merge_int8[j] = scale_merge_fp32[j] / scale_c[0];
  }

100 101 102 103 104 105 106 107 108 109
  LOG(INFO) << "gemm_int8 M: " << m << ", N: " << n << ", K: " << k
            << ", transA: " << (tra ? "true" : "false")
            << ", transB: " << (trb ? "true" : "false")
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");
#ifdef LITE_WITH_ARM
  int lda = tra ? m : k;
  int ldb = trb ? k : n;
  int ldc = n;

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  auto da = ta.mutable_data<int8_t>();
  auto db = tb.mutable_data<int8_t>();
  auto dc_int8 = tc_int8.mutable_data<int8_t>();
  auto dc_fp32 = tc_fp32.mutable_data<float>();
  auto dc_basic_int8 = tc_basic_int8.mutable_data<int8_t>();
  auto dc_basic_fp32 = tc_basic_fp32.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();

  if (FLAGS_check_result) {
    Tensor ta_fp32;
    Tensor tb_fp32;
    ta_fp32.Resize({m, k});
    ta_fp32.set_precision(PRECISION(kFloat));
    tb_fp32.Resize({k, n});
    tb_fp32.set_precision(PRECISION(kFloat));

    auto da_fp32 = ta_fp32.mutable_data<float>();
    auto db_fp32 = tb_fp32.mutable_data<float>();

    paddle::lite::arm::math::int8_to_fp32(
        da, da_fp32, scale_a.data(), 1, 1, ta.numel());
    paddle::lite::arm::math::int8_to_fp32(
        db, db_fp32, scale_b.data(), 1, 1, tb.numel());
    basic_gemm(tra,
               trb,
               m,
               n,
               k,
               1.f,
               da_fp32,
               lda,
               db_fp32,
               ldb,
               0.f,
               dc_basic_fp32,
               ldc,
               dbias,
               has_bias,
               has_relu);
    paddle::lite::arm::math::fp32_to_int8(dc_basic_fp32,
                                          dc_basic_int8,
                                          scale_c.data(),
                                          1,
                                          1,
                                          tc_basic_fp32.numel());
  }
156
  Timer t0;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  //! compute
  double ops = 2.0 * m * n * k;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  //! prepack
  Tensor tpackedA;
  int hblock = paddle::lite::arm::math::get_hblock_int8(&ctx);
  int round_up_a = ((hblock + m - 1) / hblock) * hblock;
  int round_up_k = 4 * ((k + 3) / 4);
  tpackedA.Resize({round_up_a * round_up_k});
  paddle::lite::arm::math::prepackA_int8(
      tpackedA.mutable_data<int8_t>(), da, lda, 0, m, 0, k, tra, &ctx);
  /// warmup
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::gemm_prepack_int8(tpackedA.data<int8_t>(),
                                               db,
                                               dbias,
                                               dc_fp32,
                                               m,
                                               n,
                                               k,
                                               has_bias,
                                               has_relu,
                                               trb,
                                               scale_merge_fp32.data(),
                                               &ctx);
  }

  /// int8 output compute
  Tensor tbias_int8;
  tbias_int8.Resize(tbias.dims());
  tbias_int8.set_precision(PRECISION(kFloat));
  auto dbias_int8 = tbias_int8.mutable_data<float>();
  for (int l = 0; l < tbias_int8.numel(); ++l) {
    dbias_int8[l] = dbias[l] / scale_c[0];
  }
  for (int i = 0; i < FLAGS_repeats; ++i) {
196
    t0.Start();
197 198 199 200 201 202 203 204 205 206 207 208
    paddle::lite::arm::math::gemm_prepack_int8(tpackedA.data<int8_t>(),
                                               db,
                                               dbias_int8,
                                               dc_int8,
                                               m,
                                               n,
                                               k,
                                               has_bias,
                                               has_relu,
                                               trb,
                                               scale_merge_int8.data(),
                                               &ctx);
209
    t0.Stop();
210 211
  }
  LOG(INFO) << "gemm_int8_int8 output: M: " << m << ", N: " << n << ", K: " << k
212
            << ", power_mode: " << cls << ", threads: " << ths
213
            << ", GOPS: " << ops * 1e-9f
214 215 216 217
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
218 219 220
            << " GOPs";

  /// fp32 output compute
221
  t0.Reset();
222
  for (int i = 0; i < FLAGS_repeats; ++i) {
223
    t0.Start();
224 225 226 227 228 229 230 231 232 233 234 235
    paddle::lite::arm::math::gemm_prepack_int8(tpackedA.data<int8_t>(),
                                               db,
                                               dbias,
                                               dc_fp32,
                                               m,
                                               n,
                                               k,
                                               has_bias,
                                               has_relu,
                                               trb,
                                               scale_merge_fp32.data(),
                                               &ctx);
236
    t0.Stop();
237 238
  }
  LOG(INFO) << "gemm_int8_fp32 output: M: " << m << ", N: " << n << ", K: " << k
239
            << ", power_mode: " << cls << ", threads: " << ths
240
            << ", GOPS: " << ops * 1e-9f
241 242 243 244
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    /// fp32 result
    tensor_cmp_host(tc_basic_fp32, tc_fp32, max_ratio, max_diff);
    LOG(INFO) << "fp32 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc_fp32.dims());
      tensor_diff(tc_basic_fp32, tc_fp32, tdiff);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic_fp32);
X
Xiaoyang LI 已提交
261
      LOG(INFO) << "lite result: ";
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      print_tensor(tc_fp32);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
    /// int8 result
    max_ratio = 0;
    max_diff = 0;
    tensor_cmp_host(tc_basic_int8, tc_int8, max_ratio, max_diff);
    LOG(INFO) << "int8 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (fabs(max_ratio) > 1e-4f) {
      Tensor tdiff;
      tdiff.Resize(tc_int8.dims());
      tdiff.set_precision(PRECISION(kInt8));
      tensor_diff(tc_basic_int8, tc_int8, tdiff);
      auto ptr = tdiff.data<int8_t>();
      auto ptr_basic_fp32 = tc_basic_fp32.data<float>();
      float count = 0;
      bool check = true;
      for (int i = 0; i < tdiff.numel(); ++i) {
        if (abs(ptr[i]) > 1) {
          check = false;
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          break;
        }
        if (ptr[i] != 0) {
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          count += 1;
        }
      }
      check =
          check && count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
      if (!check) {
        LOG(WARNING) << "int8 basic result";
        print_tensor(tc_basic_int8);
X
Xiaoyang LI 已提交
300
        LOG(WARNING) << "int8 lite result";
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        print_tensor(tc_int8);
        LOG(WARNING) << "int8 diff tensor";
        print_tensor(tdiff);
        return false;
      }
    }
  }
#endif
  return true;
}

TEST(TestLiteGemmInt8, gemm_prepacked_int8) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm test";
    for (auto& m : {1, 3, 8, 32, 397}) {
      for (auto& n : {1, 3, 13, 141, 512, 789}) {
        for (auto& k : {1, 3, 8, 59, 234}) {
          for (auto& tra : {false, true}) {
            for (auto& trb : {false, true}) {
              for (auto& has_bias : {false, true}) {
                for (auto& has_relu : {false, true}) {
                  for (auto& th : {1, 2, 4}) {
                    auto flag = test_gemm_int8(tra,
                                               trb,
                                               m,
                                               n,
                                               k,
                                               has_bias,
                                               has_relu,
333
                                               FLAGS_power_mode,
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                                               th);
                    if (flag) {
                      LOG(INFO) << "test m = " << m << ", n=" << n
                                << ", k=" << k
                                << ", bias: " << (has_bias ? "true" : "false")
                                << ", relu: " << (has_relu ? "true" : "false")
                                << ", trans A: " << (tra ? "true" : "false")
                                << ", trans B: " << (trb ? "true" : "false")
                                << " passed\n";
                    } else {
                      LOG(FATAL) << "test m = " << m << ", n=" << n
                                 << ", k=" << k
                                 << ", bias: " << (has_bias ? "true" : "false")
                                 << ", relu: " << (has_relu ? "true" : "false")
                                 << ", trans A: " << (tra ? "true" : "false")
                                 << ", trans B: " << (trb ? "true" : "false")
                                 << " failed\n";
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(TestGemmInt8Custom, gemm_prepacked_int8_custom) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_gemm_int8(FLAGS_traA,
                             FLAGS_traB,
                             FLAGS_M,
                             FLAGS_N,
                             FLAGS_K,
                             FLAGS_flag_bias,
                             FLAGS_flag_relu,
374
                             FLAGS_power_mode,
375 376 377 378 379 380 381 382 383 384 385 386
                             FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", k=" << FLAGS_K << ", trans A: " << FLAGS_traA
               << ", trans B: " << FLAGS_traB << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
  LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N << ", k=" << FLAGS_K
            << ", trans A: " << FLAGS_traA << ", trans B: " << FLAGS_traB
            << ", bias: " << FLAGS_flag_bias << ", relu: " << FLAGS_flag_relu
            << " passed!!";
}