lite_tensor.cc 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/fpga/lite_tensor.h"
Y
Yan Chunwei 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#include <string>

namespace paddle {
namespace lite {

using value_type = int64_t;

value_type DDimLite::production() const {
  value_type res = 1;
  for (size_t i = 0; i < this->size(); i++) {
    res *= (*this)[i];
  }
  return res;
}

value_type DDimLite::count(int start, int end) const {
  if (start < 0) {
    start = 0;
  }
  if (end > size()) {
    end = size();
  }
  if (end < start) {
    end = start;
  }
  value_type sum = 1;
  for (auto i = start; i < end; ++i) {
    sum *= data_[i];
  }
  return sum;
}

DDimLite DDimLite::Slice(int start, int end) const {
  std::vector<value_type> vec;
  for (int i = start; i < end; i++) {
    vec.push_back((*this)[i]);
  }
  return DDimLite(vec);
}

std::string DDimLite::repr() const {
  std::stringstream ss;
  if (empty()) {
    ss << "{}";
    return ss.str();
  }
  ss << "{";
  for (size_t i = 0; i < this->size() - 1; i++) {
    ss << (*this)[i] << ",";
  }
  if (!this->empty()) ss << (*this)[size() - 1];
  ss << "}";
  return ss.str();
}

void TensorLite::ShareDataWith(const TensorLite &other) {
  buffer_ = other.buffer_;
  dims_ = other.dims_;
  zynq_tensor_ = other.zynq_tensor_;
  target_ = other.target_;
  lod_ = other.lod_;
  memory_size_ = other.memory_size_;
  throw - 1;
}

void *TensorLite::mutable_data(size_t memory_size) {
  memory_size_ = memory_size;
  buffer_->ResetLazy(target_, memory_size_);
  // throw -1;
  std::cout << memory_size << std::endl;
  return buffer_->data();
}

void *TensorLite::mutable_data(TargetType target, size_t memory_size) {
  target_ = target;
  return mutable_data(memory_size);
}

void TensorLite::CopyDataFrom(const TensorLite &other) {
95
  // std::cout << "1\n";
Y
Yan Chunwei 已提交
96
  dims_ = other.dims_;
97
  // std::cout << "2\n";
Y
Yan Chunwei 已提交
98
  target_ = other.target_;
99
  // std::cout << "3\n";
Y
Yan Chunwei 已提交
100
  lod_ = other.lod_;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  auto dt = zynq_tensor_->dataType();

  // std::cout << "4\n";
  // std::cout << "dt:" << dt << std::endl;
  auto shape = other.zynq_tensor_->shape();

  Resize(other.dims());
  // mutable_data<float>();



  zynq_tensor_->mutableData<void>(zynq_tensor_->dataType(), shape);
  // std::cout << "copy Data From: \n";
  // std::cout << "ss" << (void*)(other.ZynqTensor()) << "\n";
  this->ZynqTensor()->copyFrom(other.ZynqTensor());
  // set_lod(other.lod());
Y
Yan Chunwei 已提交
117 118 119 120 121 122 123 124 125
}

// template <typename T>
// void TensorLite::mutable_data_internal() {

// }

}  // namespace lite
}  // namespace paddle