tensor.hpp 12.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <vector>

27 28
#include <unistd.h>

Y
Yan Chunwei 已提交
29 30
// #include "lite/core/tensor.h"

31 32 33 34 35
#include "lite/backends/fpga/KD/dl_engine.hpp"
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/llapi/zynqmp_api.h"
#include "lite/backends/fpga/KD/shape.hpp"
// #include "lite/backends/fpga/KD/types.hpp"
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

namespace paddle {
namespace zynqmp {

enum DataType : int {
  FP32 = 0,
  FP16 = 1,
  INT8 = 2,
  INT32 = 3,
};

enum DataSyncStatus : int {
  Synched = 0,
  Device = 1,
  CPU = 2,
};

typedef uint16_t float16;

inline int CellSize(DataType type) {
  switch (type) {
    case FP32:
      return sizeof(float);
    case FP16:
      return sizeof(float16);
    case INT32:
      return sizeof(int32_t);
    case INT8:
      return sizeof(int8_t);
    default:
      return 0;
  }
  return 0;
}

class PlaceHolder {
 public:
  PlaceHolder() {}
  explicit PlaceHolder(size_t size) {
    size_ = size;
    data_ = fpga_malloc(size_);
  }

  void* data() { return data_; }
  void set_data(const void* ptr) { data_ = const_cast<void*>(ptr); }

  size_t memorySize() { return size_; }
  void set_size(size_t new_size) { size_ = new_size; }

  ~PlaceHolder() { fpga_free(data_); }

  float scale_[2];

 private:
  void* data_ = nullptr;
  size_t size_ = 0;
};

class Tensor {
 public:
  Tensor() { DLEngine::get_instance(); }

  int id() { return id_; }

  template <typename Dtype>
  Dtype* data() {
    if (placeHolder_ == nullptr) {
      return nullptr;
    }
    void* ptr = reinterpret_cast<char*>(this->placeHolder_->data()) +
                offset * CellSize(dataType_);
    return reinterpret_cast<Dtype*>(ptr);
  }

  template <typename Dtype>
  Dtype* mutableData(DataType dataType, const Shape& shape) {
    if (this->shape_ != nullptr) {
      delete shape_;
    }
    this->shape_ = new Shape(shape);
    this->dataType_ = dataType;
    return mutableData<Dtype>();
  }

  template <typename Dtype>
  Dtype* mutableData() {
122 123
    size_t memorySize =
        shape_->memorySize(CellSize(dataType_)) * mem_scale_factor_;
Y
Yan Chunwei 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    if (placeHolder_ != nullptr) {
      if (memorySize > placeHolder_->memorySize()) {
        placeHolder_.reset(new PlaceHolder(memorySize));
      }
    } else {
      placeHolder_.reset(new PlaceHolder(memorySize));
    }
    return data<Dtype>();
  }

  size_t memorySize() {
    if (placeHolder_ == nullptr) {
      return 0;
    }
    return placeHolder_->memorySize();
  }

  void setDataType(DataType dataType) { this->dataType_ = dataType; }

  DataType dataType() { return this->dataType_; }

  Shape& shape() { return *shape_; }

  bool aligned() { return this->aligned_; }

  void setAligned(bool aligned) { this->aligned_ = aligned; }

  float* scale() { return placeHolder_->scale_; }

  void alignImage(Tensor* dst = nullptr, bool copy = false) {
    if (shape_->shouldAlign()) {
      int cell_size = CellSize(this->dataType_);
      char* dst_data = nullptr;
      size_t mem_size = shape_->memorySize(cell_size);
      if (dst == nullptr) {
        dst_data = reinterpret_cast<char*>(fpga_malloc(mem_size));
      } else {
        dst_data = dst->data<char>();
      }
      int wc = shape_->width() * shape_->channel();
      int wc_aligned = align_image(wc);
      int remainder = wc_aligned - wc;

      char* src_start = data<char>();
      char* dst_start = dst_data;
      for (int n = 0; n < shape_->num(); n++) {
        for (int h = 0; h < shape_->height(); h++) {
          memcpy(dst_start, src_start, wc * cell_size);
          memset(dst_start + wc * cell_size, 0, remainder * cell_size);
          src_start += wc * cell_size;
          dst_start += wc_aligned * cell_size;
        }
      }
      if (dst == nullptr) {
        memcpy(data<void>(), dst_data, mem_size);
        flush();
        fpga_free(dst_data);
      } else {
        dst->flush();
      }
    } else {
      if (copy) {
        dst->copyFrom(this);
      } else {
        // TODO(chonwhite) share data.
      }
    }
    if (dst != nullptr) {
      dst->copyScaleFrom(this);
    }
  }

  inline void copyScaleFrom(Tensor* src) {
    placeHolder_->scale_[0] = src->placeHolder_->scale_[0];
    placeHolder_->scale_[1] = src->placeHolder_->scale_[1];
  }

  void unalignImage(Tensor* dst = nullptr, bool copy = false) {
    Tensor* target = dst == nullptr ? this : dst;
    if (!target->aligned_) {
      if (copy && dst != nullptr) {
        dst->copyFrom(this);
      }
      return;
    }
    target->syncToCPU();
    if (shape_->shouldAlign()) {
      int cell_size = CellSize(this->dataType_);
      char* dst_data = nullptr;
      size_t mem_size = shape_->memorySize(cell_size);
      if (dst == nullptr) {
        dst_data = reinterpret_cast<char*>(fpga_malloc(mem_size));
      } else {
        dst_data = dst->data<char>();
      }
      int wc = shape_->width() * shape_->channel();
      int wc_aligned = align_image(wc);

      char* src_start = data<char>();
      char* dst_start = dst_data;
      for (int n = 0; n < shape_->num(); n++) {
        for (int h = 0; h < shape_->height(); h++) {
          memcpy(dst_start, src_start, wc * cell_size);
          src_start += wc_aligned * cell_size;
          dst_start += wc * cell_size;
        }
      }
      if (dst == nullptr) {
        memcpy(data<void>(), dst_data, mem_size);
        flush();
        fpga_free(dst_data);
      } else {
        dst->flush();
      }
    } else {
      if (copy) {
        dst->copyFrom(this);
      } else {
        // TODO(chonwhite) share data.
      }
    }
  }

247 248 249 250
  void setMemScale(float scale_factor) {
    this->mem_scale_factor_ = scale_factor;
  }

Y
Yan Chunwei 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  void shareDataWith(Tensor* src) { shareDataWith(src, src->shape()); }

  void shareDataWith(Tensor* src, const Shape& shape, int offset = 0) {
    if (shape_ != nullptr) {
      delete shape_;
    }
    this->placeHolder_ = src->placeHolder_;
    this->dataType_ = src->dataType_;
    this->aligned_ = src->aligned_;
    this->dateLocation_ = src->dateLocation_;
    this->offset = offset;
    shape_ = new Shape(const_cast<Shape&>(shape));
  }

  void copyFrom(Tensor* src) {
    if (src->dataType_ == dataType_) {
      src->syncToCPU();
      memcpy(data<void>(), src->data<void>(), memorySize());
      copyScaleFrom(src);
      flush();
      return;
    }
    BypassArgs args;
    args.input_data_type =
        src->dataType_ == FP32 ? DATA_TYPE_FP32 : DATA_TYPE_FP16;
    args.output_data_type = dataType_ == FP32 ? DATA_TYPE_FP32 : DATA_TYPE_FP16;
    args.input_layout_type = LAYOUT_HWC;
    args.output_layout_type = LAYOUT_HWC;
    args.image = {.address = src->data<void>(),
                  .scale_address = src->scale(),
                  .channels = (uint32_t)src->shape().numel(),
                  .width = 1,
                  .height = 1,
                  .pad_width = 0u,
                  .pad_height = 0u};
286 287

    ImageOutputArgs output = {
Y
Yan Chunwei 已提交
288 289
        .address = data<void>(), .scale_address = scale(),
    };
290
    args.output = output;
Y
Yan Chunwei 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    src->syncToDevice();
    size_t aligned_remainder = src->shape().numel() % 16;
    if (aligned_remainder > 0) {
      size_t dtype_size =
          src->dataType_ == FP32 ? sizeof(float) : sizeof(float16);
      void* dst = src->data<char>() + src->shape().numel() * dtype_size;
      memset(dst, 0, aligned_remainder * dtype_size);
      fpga_flush(dst, aligned_remainder * dtype_size);
    }
    src->syncToDevice();
    this->invalidate();
    perform_bypass(args);
    this->invalidate();
  }

306 307 308 309
  void flush() { 
    size_t memorySize = shape_->memorySize(CellSize(dataType_)) * mem_scale_factor_;
    fpga_flush(placeHolder_->data(), memorySize); 
  }
Y
Yan Chunwei 已提交
310 311

  void invalidate() {
312 313
    size_t memorySize = shape_->memorySize(CellSize(dataType_)) * mem_scale_factor_;
    fpga_invalidate(placeHolder_->data(), memorySize);
Y
Yan Chunwei 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  }

  void sync() {
    switch (synchedStatus_) {
      case CPU:
        flush();
        break;
      case Device:
        invalidate();
        break;
      default:
        break;
    }
  }

  void syncToCPU() {
    if (dateLocation_ == Device) {
      invalidate();
    }
  }

  void syncToDevice() {
    if (dateLocation_ == CPU) {
      flush();
    }
  }

  DataSyncStatus synchedStatus() { return synchedStatus_; }

  void setSynchedStatus(DataSyncStatus status) { synchedStatus_ = status; }

  void setDataLocation(DataSyncStatus location) { dateLocation_ = location; }

  void print() {}

  void printScale() {
    if (placeHolder_ == nullptr) {
      return;
    }
353 354 355 356 357 358 359 360 361 362 363
    std::cout << scale()[0] << " , " << scale()[1] << std::endl;
  }

  void printScale(std::string type) {
    std::cout << type << " : "
              << std::to_string(shape_->num()) + "_" +
                     std::to_string(shape_->channel()) + "_" +
                     std::to_string(shape_->height()) + "_" + std::to_string(shape_->width())
              << std::endl;
    std::cout << type << " \n";
    printScale();
Y
Yan Chunwei 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  }

  std::string dimsFileName() {
    return std::to_string(shape_->num()) + "_" +
           std::to_string(shape_->channel()) + "_" +
           std::to_string(shape_->height()) + "_" +
           std::to_string(shape_->width()) + ".txt";
  }

  void saveToFile() { std::string path = dimsFileName(); }

  void saveToFile(std::string prefix, bool with_shape) {
    std::string path = prefix;
    if (with_shape) {
      path = path + "_" + dimsFileName();
    } else {
      path = path + ".txt";
    }
    saveToFile(path);
  }

  void saveToFile(std::string path) {
386
    
Y
Yan Chunwei 已提交
387
    syncToCPU();
388
    invalidate();
Y
Yan Chunwei 已提交
389 390 391 392
    std::ofstream ofs;
    static int counter = 0;
    std::string npath = std::to_string(counter) + "_" + path;
    counter++;
393
    std::cout << "======== saving file:" << npath << " ============\n";
Y
Yan Chunwei 已提交
394 395 396 397
    save_file_with_name(npath);
  }

  void save_file_with_name(std::string path) {
398
    return;
Y
Yan Chunwei 已提交
399
    invalidate();
400 401
    // usleep(20000);
    // return;
Y
Yan Chunwei 已提交
402 403 404
    std::ofstream ofs;

    ofs.open(path);
405 406 407 408 409

    ofs << "dataType: " << dataType_ << std::endl;
    ofs << "scale: " << scale()[0] << " , " << scale()[1] << std::endl;


Y
Yan Chunwei 已提交
410 411 412 413
    for (int i = 0; i < shape_->numel(); i++) {
      float value = 0;
      if (dataType_ == FP32) {
        value = data<float>()[i];
414
      } else if (dataType_ == FP16) {
Y
Yan Chunwei 已提交
415
        value = half_to_float(data<float16>()[i]);
416 417
      } else {
        value = data<int8_t>()[i];
Y
Yan Chunwei 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
      }
      ofs << value << std::endl;
    }
    ofs.close();
  }

  void readFromFile(std::string path) {
    std::ifstream file_stream;
    file_stream.open(path);
    if (!file_stream) {
      return;
    }
    int num = shape_->numel();
    invalidate();
    float max = 0.0f;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    if (dataType_ == FP16) {
      float16* data = mutableData<float16>();
      for (int i = 0; i < num; ++i) {
        float value = 0;
        file_stream >> value;
        max = std::max(std::abs(value), max);
        data[i] = float_to_half(value);
      }
    } else {
      float* data = mutableData<float>();
      for (int i = 0; i < num; ++i) {
        float value = 0;
        file_stream >> value;
        max = std::max(std::abs(value), max);
        data[i] = value;
      }
Y
Yan Chunwei 已提交
449 450 451 452 453 454
    }
    flush();
    placeHolder_->scale_[0] = max / 127.0f;
    placeHolder_->scale_[1] = 127.0f / max;
  }

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  friend std::ostream& operator<<(std::ostream& os, Tensor& tensor) {
    os << "tensor:"
       << "\n";
    os << "dims: {";
    for (int i = 0; i < tensor.shape().dimSize(); ++i) {
      os << tensor.shape()[i] << " ";
    }
    os << "}\n";
    for (int i = 0; i < tensor.shape().numel(); i++) {
      float value = 0;
      if (tensor.dataType() == FP32) {
        value = tensor.data<float>()[i];
      } else {
        value = half_to_float(tensor.data<float16>()[i]);
      }
      os << value << " ";
    }
    os << "\n";
    return os;
  }

Y
Yan Chunwei 已提交
476 477 478 479 480 481 482 483 484
  ~Tensor() {
    if (shape_ != nullptr) {
      delete shape_;
      shape_ = nullptr;
    }
  }

 private:
  int offset = 0;
485
  float mem_scale_factor_ = 1.0f;
Y
Yan Chunwei 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  std::shared_ptr<PlaceHolder> placeHolder_;
  Shape* shape_ = nullptr;
  DataType dataType_ = FP32;
  bool aligned_ = false;
  DataSyncStatus synchedStatus_ = Synched;
  DataSyncStatus dateLocation_ = Device;

  static int generateID() {
    static int sID = 0;
    int id = sID++;
    return id;
  }

  int id_ = generateID();
};

}  // namespace zynqmp
}  // namespace paddle