subgraph_compute.h 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18
#include <algorithm>
#include <map>
19 20 21
#include <memory>
#include <string>
#include <vector>
22

23 24
#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
25
#include "lite/core/op_lite.h"
26
#include "lite/core/op_registry.h"
27
#include "lite/core/tensor.h"
28 29 30
#include "lite/core/type_system.h"
#include "lite/core/types.h"
#include "lite/kernels/mlu/bridges/graph.h"
31
#include "lite/kernels/mlu/bridges/tensor.h"
32 33
#include "lite/kernels/npu/bridges/engine.h"
#include "lite/kernels/npu/bridges/registry.h"
34
#include "lite/utils/env.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace lite {
namespace kernels {
namespace mlu {

template <PrecisionType Precision>
class SubgraphEngine : public subgraph::Engine {
 public:
  SubgraphEngine(KernelContext* ctx,
                 int block_idx,
                 cpp::BlockDesc* block_desc,
                 const std::vector<std::string>& input_names,
                 const std::vector<std::string>& output_names,
                 Scope* scope,
50
                 paddle::lite_api::PrecisionType type)
51
      : subgraph::Engine(
52 53 54 55 56 57 58 59 60 61 62
            ctx, block_idx, block_desc, input_names, output_names, scope),
        fp_type_(type) {
    VLOG(4) << "[MLU] PADDLE_LITE_MLU_SAVE_OFFLINE_MODEL is "
            << GetBoolFromEnv("PADDLE_LITE_MLU_SAVE_OFFLINE_MODEL");
    VLOG(4) << "[MLU] PADDLE_LITE_MLU_DISABLE_BATCH_SIZE_CHANGEABLE is "
            << GetBoolFromEnv("PADDLE_LITE_MLU_DISABLE_BATCH_SIZE_CHANGEABLE");
    VLOG(4) << "[MLU] LITE_DISABLE_MLU_CAST is "
            << GetBoolFromEnv("LITE_DISABLE_MLU_CAST");
    if (GetBoolFromEnv("PADDLE_LITE_MLU_DISABLE_BATCH_SIZE_CHANGEABLE")) {
      disable_batch_size_changeable_ = true;
    }
63 64
  }

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  int Build() {
    // In order to attach all of the ops of the block desc, we need to build
    // the original program firstly.
    BuildOriginProgram();
    // Run InferShape() of all of ops, and convert Paddle ops to MLU IR graph
    build_device_program_status_ = BuildDeviceProgram();
    return build_device_program_status_;
  }

  int Launch() {
    // Rebuild device program when the shapes of input tensors have been
    // changed.
    if (subgraph::CHECK_SUCCESS(build_device_program_status_) &&
        subgraph::CHECK_REBUILD_WHEN_SHAPE_CHANGED(
            build_device_program_status_) &&
        InputShapeChanged()) {
      Build();
    }
    if (subgraph::CHECK_FAILED(build_device_program_status_)) {
      LaunchOriginProgram();
    } else {
      LaunchDeviceProgram();
    }
    return 0;
  }

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  bool InputShapeChanged() {
    std::vector<std::vector<int64_t>> new_shape;
    // used in batch changable situation
    std::vector<std::vector<int64_t>> all_shape;
    for (auto origin_itensor : origin_itensors_) {
      if (!disable_batch_size_changeable_) {
        auto iv = origin_itensor->dims().Vectorize();
        all_shape.push_back(iv);
        iv.erase(iv.begin());
        new_shape.push_back(iv);
      } else {
        new_shape.push_back(origin_itensor->dims().Vectorize());
      }
    }
    inputs_shape_ = new_shape;
    all_inputs_shape_ = all_shape;
    if (shape_graph_map_.count(inputs_shape_) > 0) {
      return false;
    }
    VLOG(3) << "MLU graph input shape changed" << std::endl;
    return true;
  }

  inline cnmlDataType_t PrecisionToDatatype(PrecisionType data_type) {
    switch (data_type) {
      case paddle::lite_api::PrecisionType::kFP16:
        return CNML_DATA_FLOAT16;
      case paddle::lite_api::PrecisionType::kFloat:
        return CNML_DATA_FLOAT32;
      case paddle::lite_api::PrecisionType::kInt32:
        return CNML_DATA_INT32;
      case paddle::lite_api::PrecisionType::kInt8:
        return CNML_DATA_UINT8;
      default:
        return PrecisionToDatatype(fp_type_);
    }
  }

129 130
 protected:
  int BuildDeviceProgram() override {
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    if (!error_compile_batch_size_changeable_ &&
        !disable_batch_size_changeable_) {
      int status = BuildDeviceProgramImpl();
      if (subgraph::CHECK_SUCCESS(status)) {
        return status;
      }
      LOG(INFO) << "[MLU] build batch_size changeable subgraph op failed, "
                   "changed to input_shape changeable";
    }
    error_compile_batch_size_changeable_ = true;
    disable_batch_size_changeable_ = true;
    return BuildDeviceProgramImpl();
  }

  int BuildDeviceProgramImpl() {
146
    int status = 0;
147 148 149 150 151 152 153 154 155
    auto graph = std::make_shared<paddle::lite::subgraph::mlu::Graph>();
    graph->SetFPType(fp_type_);
    std::vector<std::vector<int64_t>> new_shape;
    origin_itensors_.clear();
    origin_otensors_.clear();

    auto data_order = block_desc_->GetOp<cpp::OpDesc>(0)->Type() == "layout"
                          ? CNML_NCHW
                          : CNML_NHWC;
156
    // Convert all of input data vars and added into the MLU IR graph
157
    status |= subgraph::REBUILD_WHEN_SHAPE_CHANGED;
158 159
    for (auto& input_name : input_names_) {
      auto input_tensor = scope_->FindMutableTensor(input_name);
160 161 162 163 164 165 166 167 168 169 170
      auto data_type = input_tensor->precision();
      cnmlDataType_t fp_type = PrecisionToDatatype(data_type);
      origin_itensors_.push_back(input_tensor);
      if (!disable_batch_size_changeable_) {
        auto iv = input_tensor->dims().Vectorize();
        iv.erase(iv.begin());
        new_shape.push_back(iv);
      } else {
        new_shape.push_back(input_tensor->dims().Vectorize());
      }

171
      CHECK(input_tensor);
172 173 174 175 176 177 178
      VLOG(4) << "subgraph input tensor " << input_name << std::endl;
      auto input_node = graph->AddNode(input_name,
                                       input_tensor->dims().Vectorize(),
                                       CNML_TENSOR,
                                       CNML_NCHW,
                                       fp_type,
                                       data_order);
179 180 181 182 183 184 185 186 187 188 189
      CHECK(input_node);
      // MLU doesn't support dynamic dimensions/shapes, so need to rebuild
      // the program when the shape of any input tensor is changed.
    }
    LOG(INFO) << "START TO CONVERT ";
    // Convert all of ops and its weights and added into the MLU IR graph
    const auto& bridges = subgraph::Registry::Instance();
    for (auto& inst : origin_program_) {
      auto op = inst.op();
      CHECK(op);
      std::string op_type = op->op_info()->Type();
190 191 192 193 194 195 196 197 198 199 200 201
      // since cnml's compile api will not return error now, we simply check
      // op's type
      if (!disable_batch_size_changeable_ &&
          std::find(unsupport_batch_size_changeable_op_type_.begin(),
                    unsupport_batch_size_changeable_op_type_.end(),
                    op_type) !=
              unsupport_batch_size_changeable_op_type_.end()) {
        status |= subgraph::FAILED;
        VLOG(4) << "[MLU] found unsupported batch_size changeable op type: "
                << op_type;
        return status;
      }
202 203
      op->CheckShape();
      const_cast<OpLite*>(op)->InferShape();
204 205 206 207 208 209
      if (!bridges.Exists(op_type, TARGET(kMLU))) {
        LOG(INFO) << "MLU bridges doesn't support op_type: " << op_type;
        return subgraph::FAILED;
      }
      auto kernel = inst.kernel();
      status |= bridges.Select(op_type, TARGET(kMLU))(
210
          reinterpret_cast<void*>(graph.get()),
211 212 213 214 215 216 217 218 219
          const_cast<OpLite*>(op),
          const_cast<KernelBase*>(kernel));
      if (subgraph::CHECK_FAILED(status)) {
        return subgraph::FAILED;
      }
    }
    // Obtain the output nodes of the MLU IR graph and build the graph to MLU
    // runtime
    for (auto& output_name : output_names_) {
220 221
      if (graph->HasNode(output_name)) {
        graph->AddOutput(graph->GetNode(output_name));
222
        auto output_tensor = scope_->FindMutableTensor(output_name);
223 224 225 226 227 228
        origin_otensors_.push_back(output_tensor);
        VLOG(4) << "subgraph output tensor " << output_name << std::endl;

        // auto node = graph->GetNode(output_name);
        // CHECK(p_data);
        // node->set_mlu_ptr(p_data);
229 230 231
      }
    }
    for (auto& input_name : input_names_) {
232 233
      graph->AddInput(graph->GetNode(input_name),
                      disable_batch_size_changeable_);
234
    }
235 236

    CHECK(!origin_otensors_.empty()) << "[MLU] no valid output names";
237 238 239
    auto& mlu_context = this->ctx_->template As<MLUContext>();
    auto core_version = mlu_context.MLUCoreVersion();
    auto core_number = mlu_context.MLUCoreNumber();
240 241 242 243 244
    graph->Compile(core_version, core_number);
    shape_graph_map_[new_shape] = graph;
    if (GetBoolFromEnv("PADDLE_LITE_MLU_SAVE_OFFLINE_MODEL")) {
      graph->GenOfflineModel(GetOfflineModName());
    }
245 246 247
    return status;
  }

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  std::string TrimStrings(const std::string& origin_str) {
    std::string str = origin_str;
    std::size_t found = str.find("0x");
    std::size_t found_end = 0;
    const std::vector<std::string> del_strs = {
        "/trans_io_copy", "/trans_cast", "/trans_layout"};
    for (const auto& iterm : del_strs) {
      found_end = str.find(iterm);
      // trim point address and one of the del_strs
      if (found != std::string::npos && found_end != std::string::npos) {
        str.replace(found, found_end - found, "");
        found_end = str.find(iterm);
        str.replace(found_end, iterm.size(), "");
        break;
      }
    }
    return str;
  }

  std::string GetOfflineModName() {
    sort(input_names_.begin(), input_names_.end());
    sort(output_names_.begin(), output_names_.end());
    const auto& delimiter = "__";
    const auto& delimiter_num = "_";
    const auto& input_shape_str = "input_shape_";
    const auto& output_shape_str = "output_shape_";
    std::string name = "";
    std::string tmp = "";
    for (const auto& input_name : input_names_) {
      tmp = input_name;
      name += TrimStrings(tmp) + delimiter + input_shape_str;
      auto input_tensor = scope_->FindMutableTensor(input_name);
      for (const auto& iterm : input_tensor->dims().Vectorize()) {
        name += std::to_string(iterm) + delimiter_num;
      }
      name += delimiter;
    }
    for (const auto& output_name : output_names_) {
      tmp = output_name;
      name += TrimStrings(tmp) + delimiter + output_shape_str;
      auto output_tensor = scope_->FindMutableTensor(output_name);
      for (const auto& iterm : output_tensor->dims().Vectorize()) {
        name += std::to_string(iterm) + delimiter_num;
      }
      name += delimiter;
    }
    std::replace(name.begin(), name.end(), '/', '-');
    return name;
  }

  void InferOutputsShapeOnly() {
    // infer outputs shape when enable BATCH_SIZE_CHANGEABLE
    const auto iter = in_out_shape_map_.find(all_inputs_shape_);
    if (iter != in_out_shape_map_.end()) {
      for (size_t i = 0; i < origin_otensors_.size(); ++i) {
        origin_otensors_[i]->Resize(iter->second[i]);
      }
    } else {
      for (auto& inst : origin_program_) {
        auto op = inst.op();
        CHECK(op);
        op->CheckShape();
        const_cast<OpLite*>(op)->InferShape();
      }
      std::vector<std::vector<int64_t>> outs_shape;
      for (size_t i = 0; i < origin_otensors_.size(); ++i) {
        outs_shape.push_back(origin_otensors_[i]->dims().Vectorize());
      }
      in_out_shape_map_[all_inputs_shape_] = outs_shape;
    }
  }

  inline void* GetOutputDataPtr(Tensor* tensor, bool use_mlu_cast) {
    if (use_mlu_cast) {
      // output is float, since cast fused in subgraph
      return static_cast<void*>(tensor->mutable_data<float>(TARGET(kMLU)));
    } else {
      return static_cast<void*>(
          tensor->template mutable_data<
              typename subgraph::mlu::MLUTypeTraits<Precision>::type>(
              TARGET(kMLU)));
    }
  }

332
  int LaunchDeviceProgram() override {
333
    // prepare input and output memory
334 335
    auto& mlu_context = this->ctx_->template As<MLUContext>();
    auto exec_queue = mlu_context.exec_queue();
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

    auto graph = shape_graph_map_[inputs_shape_];
    auto* graph_input = graph->MutableInputs();
    auto* graph_output = graph->MutableOutputs();
    CHECK_EQ(graph_input->size(), origin_itensors_.size());
    CHECK_EQ(graph_output->size(), origin_otensors_.size());

    bool disable_mlu_cast = GetBoolFromEnv("LITE_DISABLE_MLU_CAST");

    if (!disable_batch_size_changeable_) {
      std::vector<std::shared_ptr<paddle::lite::subgraph::mlu::MLUTensor>>
          graph_in;
      if (shape_tensor_map_in_.find(all_inputs_shape_) !=
          shape_tensor_map_in_.end()) {
        graph_in = shape_tensor_map_in_[all_inputs_shape_];
        for (size_t i = 0; i < origin_itensors_.size(); ++i) {
          graph_in[i]->set_mlu_ptr(
              const_cast<void*>(origin_itensors_[i]->raw_data()));
        }
      } else {
        graph_in.reserve(origin_itensors_.size());
        for (size_t i = 0; i < origin_itensors_.size(); ++i) {
          paddle::lite::subgraph::mlu::MLUTensor tmp(
              origin_itensors_[i]->dims().Vectorize());
          tmp.set_mlu_dtype(graph_input->at(i)->dtype());
          tmp.set_mlu_ptr(const_cast<void*>(origin_itensors_[i]->raw_data()));
          graph_in.push_back(
              std::make_shared<paddle::lite::subgraph::mlu::MLUTensor>(tmp));
        }
        shape_tensor_map_in_[all_inputs_shape_] = graph_in;
      }

      // TODO(zhangmingwei): we just call every op's infer_shape to get outputs'
      // shape, may be it's better to use cnml's api to get output shape. This
      // can be done when cnml's tensor dimension is totally equal to lite's
      // tensor
      // shape.
      InferOutputsShapeOnly();
      // const std::vector<std::vector<int64_t>> new_output_size =
      //    graph->InferOutputsShape(graph_in);

      std::vector<std::shared_ptr<paddle::lite::subgraph::mlu::MLUTensor>>
          graph_out;

      if (shape_tensor_map_out_.find(all_inputs_shape_) !=
          shape_tensor_map_out_.end()) {
        graph_out = shape_tensor_map_out_[all_inputs_shape_];
        for (size_t i = 0; i < origin_otensors_.size(); ++i) {
          // origin_otensors_[i]->Resize(new_output_size.at(i));
          graph_out[i]->set_mlu_ptr(
              GetOutputDataPtr(origin_otensors_[i], !disable_mlu_cast));
        }
      } else {
        graph_out.reserve(origin_otensors_.size());
        for (size_t i = 0; i < origin_otensors_.size(); ++i) {
          // origin_otensors_[i]->Resize(new_output_size.at(i));
          paddle::lite::subgraph::mlu::MLUTensor tmp(
              origin_otensors_[i]->dims().Vectorize());
          tmp.set_mlu_dtype(graph_output->at(i)->dtype());
          tmp.set_mlu_ptr(
              GetOutputDataPtr(origin_otensors_[i], !disable_mlu_cast));
          graph_out.push_back(
              std::make_shared<paddle::lite::subgraph::mlu::MLUTensor>(tmp));
        }
        shape_tensor_map_out_[all_inputs_shape_] = graph_out;
      }
      graph->Compute(exec_queue, graph_in, graph_out);
    } else {
      for (size_t i = 0; i < origin_itensors_.size(); ++i) {
        graph_input->at(i)->set_mlu_ptr(
            const_cast<void*>(origin_itensors_[i]->raw_data()));
      }
      for (size_t i = 0; i < origin_otensors_.size(); ++i) {
        origin_otensors_[i]->Resize(graph_output->at(i)->get_origin_shape());
        graph_output->at(i)->set_mlu_ptr(
            GetOutputDataPtr(origin_otensors_[i], !disable_mlu_cast));
      }
      // only cnmlComputeFusionOpForward_V3 need cnrtInvokeFuncParam_t
      cnrtInvokeFuncParam_t forward_param = mlu_context.forward_param();
      int data_param = 1;
      forward_param.data_parallelism = &data_param;
      u32_t affinity = mlu_context.affinity();
      forward_param.affinity = &affinity;
      forward_param.end = CNRT_PARAM_END;
      graph->Compute(forward_param, exec_queue);

#ifdef MLU_DUMP_SUBGRAPH_IO
      // Graph node store compile-time tensor while batchsize mutable is set.
      // Only batchsize mutable is disabled, data exists in graph node at
      // runtime
      // =========== DUMP ===================
      for (auto input_name : input_names_) {
        auto input_tensor =
            shape_graph_map_[inputs_shape_]->GetNode(input_name);
        auto dump_name = input_name;
        while (dump_name.find("/") != std::string::npos) {
          dump_name = dump_name.replace(dump_name.find("/"), 1, "_");
        }
        VLOG(6) << "dump_name: " << dump_name;
        input_tensor->ToFile(dump_name);
      }
      for (auto output_name : output_names_) {
        if (shape_graph_map_[inputs_shape_]->HasNode(output_name)) {
          auto output_tensor =
              shape_graph_map_[inputs_shape_]->GetNode(output_name);
          auto dump_name = output_name;
          while (dump_name.find("/") != std::string::npos) {
            dump_name = dump_name.replace(dump_name.find("/"), 1, "_");
          }
          VLOG(6) << "dump_name: " << dump_name;
          output_tensor->ToFile(dump_name);
        } else {
          VLOG(6) << "graph does not have " << output_name << " as output"
                  << std::endl;
        }
      }
#endif
      // =========== DUMP END ================
    }

456 457 458
    return 0;
  }

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
  paddle::lite_api::PrecisionType fp_type_;
  std::vector<std::vector<int64_t>> inputs_shape_{};
  std::vector<std::vector<int64_t>> all_inputs_shape_{};
  std::map<std::vector<std::vector<int64_t>>,
           std::shared_ptr<paddle::lite::subgraph::mlu::Graph>>
      shape_graph_map_{};
  // enable batch size changeable by default, this cound be changed by
  // environment variable PADDLE_LITE_MLU_DISABLE_BATCH_SIZE_CHANGEABLE and
  // whether the op can be compiled with batch size changeable way
  bool disable_batch_size_changeable_{false};
  bool error_compile_batch_size_changeable_{false};
  std::vector<std::string> unsupport_batch_size_changeable_op_type_{"concat"};
  // search output runtime MLUTensor for certain output shape when enable
  // BATCH_SIZE_CHANGEABLE
  std::map<std::vector<std::vector<int64_t>>,
           std::vector<std::shared_ptr<paddle::lite::subgraph::mlu::MLUTensor>>>
      shape_tensor_map_out_{};
  // search input runtime MLUTensor for certain input shape when enable
  // BATCH_SIZE_CHANGEABLE
  std::map<std::vector<std::vector<int64_t>>,
           std::vector<std::shared_ptr<paddle::lite::subgraph::mlu::MLUTensor>>>
      shape_tensor_map_in_{};
  // search output shape for certain input shape when enable
  // BATCH_SIZE_CHANGEABLE
  std::map<std::vector<std::vector<int64_t>>, std::vector<std::vector<int64_t>>>
      in_out_shape_map_{};
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
};

template <PrecisionType Precision>
class SubgraphCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::SubgraphParam;

  void PrepareForRun() override {
    auto& param = this->template Param<param_t>();
    // LOG(INFO) << "SUBGRAP Prepare RUN index " << param.sub_block_idx;
    engine_.reset(new SubgraphEngine<Precision>(this->ctx_.get(),
                                                param.sub_block_idx,
                                                param.sub_block_desc,
                                                param.input_data_names,
                                                param.output_data_names,
                                                param.scope,
                                                this->precision()));
    CHECK(engine_);
    engine_->Build();
  }

  void Run() override {
    CHECK(engine_);
    engine_->Launch();
  }

  virtual ~SubgraphCompute() = default;

 private:
  std::unique_ptr<SubgraphEngine<Precision>> engine_;
};

}  // namespace mlu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle