activation_ops.cc 4.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.i

#include "lite/operators/activation_ops.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ActivationOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Out);
  return true;
}

bool ActivationOp::InferShape() const {
  param_.Out->Resize(param_.X->dims());
  auto out_lod = param_.Out->mutable_lod();
  *out_lod = param_.X->lod();
  return true;
}

bool ActivationOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
  auto x_name = opdesc.Input("X").front();
  auto out_name = opdesc.Output("Out").front();
  param_.X = scope->FindVar(x_name)->GetMutable<lite::Tensor>();
  if (opdesc.Type() == "leaky_relu") {
    param_.Leaky_relu_alpha = opdesc.GetAttr<float>("alpha");
  }
  if (opdesc.Type() == "relu_clipped") {
    param_.Relu_clipped_coef = opdesc.GetAttr<float>("Relu_clipped_coef");
  }
  if (opdesc.Type() == "prelu") {
    param_.Prelu_mode = opdesc.GetAttr<std::string>("mode");
    auto prelu_alpha_name = opdesc.Input("Alpha").front();
    param_.Prelu_alpha =
        scope->FindVar(prelu_alpha_name)->GetMutable<lite::Tensor>();
  }
  if (opdesc.Type() == "swish") {
    param_.Swish_beta = opdesc.GetAttr<float>("beta");
  }
54 55 56 57 58

  if (opdesc.Type() == "hard_sigmoid") {
    param_.hard_sigmoid_slope = opdesc.GetAttr<float>("slope");
    param_.hard_sigmoid_offset = opdesc.GetAttr<float>("offset");
  }
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  param_.Out = scope->FindVar(out_name)->GetMutable<lite::Tensor>();
  return true;
}

#ifdef LITE_WITH_TRAIN

bool ActivationGradOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X_grad);
  CHECK_OR_FALSE(param_.Out_grad);
  return true;
}

bool ActivationGradOp::InferShape() const {
  param_.X_grad->Resize(param_.Out_grad->dims());
  return true;
}

bool ActivationGradOp::AttachImpl(const cpp::OpDesc& opdesc,
                                  lite::Scope* scope) {
  auto Out_grad_name = opdesc.Input(framework::GradVarName("Out")).front();
  auto X_grad_name = opdesc.Output(framework::GradVarName("X")).front();

  param_.Out_grad = GetVar<lite::Tensor>(scope, Out_grad_name);
  param_.X_grad = GetMutableVar<Tensor>(scope, X_grad_name);

  if (opdesc.HasInput("X")) {
    auto X_name = opdesc.Input("X").front();
    param_.X = GetVar<lite::Tensor>(scope, X_name);
  } else {
    param_.X = param_.X_grad;
  }

  if (opdesc.HasInput("Out")) {
    auto Out_name = opdesc.Input("Out").front();
    param_.Out = GetVar<lite::Tensor>(scope, Out_name);
  } else {
    param_.Out = param_.Out_grad;
  }

  return true;
}

#endif

}  // namespace operators
}  // namespace lite
}  // namespace paddle
REGISTER_LITE_OP(square, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(leaky_relu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu_clipped, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(prelu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(sigmoid, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(tanh, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(swish, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu6, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(log, paddle::lite::operators::ActivationOp);
Y
Yan Chunwei 已提交
116
REGISTER_LITE_OP(exp, paddle::lite::operators::ActivationOp);
117
REGISTER_LITE_OP(floor, paddle::lite::operators::ActivationOp);
118
REGISTER_LITE_OP(hard_sigmoid, paddle::lite::operators::ActivationOp);
119
REGISTER_LITE_OP(sqrt, paddle::lite::operators::ActivationOp);
J
juncaipeng 已提交
120
REGISTER_LITE_OP(rsqrt, paddle::lite::operators::ActivationOp);
121
REGISTER_LITE_OP(softsign, paddle::lite::operators::ActivationOp);
122
REGISTER_LITE_OP(gelu, paddle::lite::operators::ActivationOp);
Y
Yan Chunwei 已提交
123 124 125 126

#ifdef LITE_WITH_TRAIN
REGISTER_LITE_OP(square_grad, paddle::lite::operators::ActivationGradOp);
#endif