conv_bn_kernel.cpp 4.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/api.h"
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26
  Tensor *input = const_cast<Tensor *>(param->Input());
27
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
28
  Tensor *filter = const_cast<Tensor *>(param->Filter());
Z
zhangyang 已提交
29 30 31 32 33 34
  Tensor *out = param->Output();
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
35 36
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
37

Z
zhangyang 已提交
38
  const int channel = out->dims()[1];
Z
zhangyang 已提交
39 40 41 42 43 44 45 46 47 48
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
49
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
50 51
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
52 53 54
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
55 56 57

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
58
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
59

Z
zhangyang 已提交
60 61 62 63 64
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
65
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
66

Z
zhangyang 已提交
67 68 69 70 71
  fpga::WrapperConvArgs convArgs;
  convArgs.group_num = (uint32_t)param->Groups();
  convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
  convArgs.filter_num = (uint32_t)filter->dims()[0];
  convArgs.output.address = out_ptr;
Z
zhangyang 已提交
72
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
73 74
  convArgs.args = (fpga::ConvArgs *)fpga::fpga_malloc(convArgs.split_num *
                                                      sizeof(fpga::ConvArgs));
Z
zhangyang 已提交
75 76
  param->SetFpgaArgs(convArgs);

Z
zhangyang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  int n = convArgs.split_num;
  for (int i = 0; i < n; i++) {
    convArgs.args[i].relu_enabled = relu_enabled;
    convArgs.args[i].group_num = (uint32_t)param->Groups();
    convArgs.args[i].kernel.stride_h = (uint32_t)param->Strides()[0];
    convArgs.args[i].kernel.stride_w = (uint32_t)param->Strides()[1];
    convArgs.args[i].kernel.height = (uint32_t)filter->dims()[2];
    convArgs.args[i].kernel.width = (uint32_t)filter->dims()[3];
    convArgs.args[i].image.address = input_ptr;
    convArgs.args[i].image.channels = (uint32_t)input->dims()[1];
    convArgs.args[i].image.height = (uint32_t)input->dims()[2];
    convArgs.args[i].image.width = (uint32_t)input->dims()[3];
    convArgs.args[i].image.pad_height = (uint32_t)param->Paddings()[0];
    convArgs.args[i].image.pad_width = (uint32_t)param->Paddings()[1];
    convArgs.args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
    convArgs.args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
    convArgs.args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
                                    channel - (n - 1) * element_num_per_div)
                              : element_num_per_div);
    convArgs.args[i].image.scale_address =
        (float *)fpga::fpga_malloc(2 * sizeof(float));
  }
Z
zhangyang 已提交
103 104 105 106
  return true;
}

template <>
N
nhzlx 已提交
107 108
void ConvBNKernel<FPGA, float>::Compute(
    const FusionConvBNParam<FPGA> &param) const {
Z
zhangyang 已提交
109 110 111 112 113 114 115 116
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif