api.cpp 10.7 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "fpga/V2/api.h"
#include <algorithm>
#include "fpga/V2/bias_scale.h"
#include "fpga/V2/config.h"
Z
zhangyang 已提交
19
#include "fpga/V2/driver/driver.h"
qnqinan's avatar
qnqinan 已提交
20 21 22 23 24
#include "fpga/V2/filter.h"
#include "fpga/V2/image.h"

namespace paddle_mobile {
namespace fpga {
Z
zhangyang 已提交
25

26
static std::map<void *, size_t> memory_map;
H
hanbuhe 已提交
27

Z
zhangyang 已提交
28
int open_device() {
Z
zhangyang 已提交
29
  int ret = driver::open_device_driver();
qnqinan's avatar
qnqinan 已提交
30 31 32 33
  return ret;
}

int close_device() {
Z
zhangyang 已提交
34
  int ret = driver::close_device_driver();
qnqinan's avatar
qnqinan 已提交
35 36 37 38 39 40
  return ret;
}

void *fpga_malloc(size_t size) {
  static uint64_t counter = 0;
#ifdef PADDLE_MOBILE_ZU5
Z
zhangyang 已提交
41
  auto ptr = driver::fpga_malloc_driver(size);
qnqinan's avatar
qnqinan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#else
  auto ptr = malloc(size);
#endif
  counter += size;
  memory_map.insert(std::make_pair(ptr, size));
  //  DLOG << "Address: " << ptr << ", " << size << " bytes allocated. Total "
  //       << counter << " bytes";
  return ptr;
}

void fpga_free(void *ptr) {
  static uint64_t counter = 0;
  size_t size = 0;
  auto iter = memory_map.find(ptr);  // std::map<void *, size_t>::iterator
  if (iter != memory_map.end()) {
    size = iter->second;
    memory_map.erase(iter);
#ifdef PADDLE_MOBILE_ZU5
Z
zhangyang 已提交
60
    driver::fpga_free_driver(ptr);
qnqinan's avatar
qnqinan 已提交
61 62 63 64 65 66 67 68 69 70
#else
    free(ptr);
#endif
    counter += size;
    //    DLOG << "Address: " << ptr << ", " << size << " bytes freed. Total "
    //         << counter << " bytes";
  } else {
    DLOG << "Invalid pointer";
  }
}
Z
zhangyang 已提交
71 72 73 74 75 76
void fpga_copy(void *dest, const void *src, size_t num) {
#ifdef PADDLE_MOBILE_ZU5
  driver::fpga_copy_driver(dest, src, num);
#else
  memcpy(dest, src, num);
#endif
Z
zhangyang 已提交
77 78
}

Z
zhangyang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
int fpga_flush(void *address, size_t size) {
#ifdef PADDLE_MOBILE_ZU5
  return driver::fpga_flush_driver(address, size);
#else
  return 0;
#endif
}
int fpga_invalidate(void *address, size_t size) {
#ifdef PADDLE_MOBILE_ZU5
  return driver::fpga_invalidate_driver(address, size);
#else
  return 0;
#endif
qnqinan's avatar
qnqinan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
  auto channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = image_tensor->data<float>();
  size_t memory_size = channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  int aligned_channel = filter::calc_aligned_channel((int)channel);  // NOLINT
  image::format_image(&new_data, (int)channel, (int)height,          // NOLINT
                      (int)width,                                    // NOLINT
                      aligned_channel);
  image_tensor->reset_data_ptr(new_data);
}

void format_fp16_ofm(framework::Tensor *ofm_tensor, int aligned_channel) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto height = dims[2], width = dims[3];
    memory_size = (height + 1) / 2 * 2 * width * aligned_channel * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = aligned_channel * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

void format_fp32_ofm(framework::Tensor *ofm_tensor, int aligned_channel) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto height = dims[2], width = dims[3];
    memory_size = height * width * aligned_channel * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = aligned_channel * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, (int)filter_tensor->numel());  // NOLINT
}

int get_aligned_channel_num(int channel_num) {
  return filter::calc_aligned_channel(channel_num);
}

int get_aligned_filter_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
  return filter::calc_aligned_num((int)dims[0], (int)dims[1]);  // NOLINT
}

int get_conv_output_channel(framework::Tensor *filter_tensor) {
  int aligned_filter_num = get_aligned_filter_num(filter_tensor);
  return get_aligned_channel_num(aligned_filter_num);
}
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, (int)num, (int)channel,  // NOLINT
                        (int)height,                        // NOLINT
                        (int)width, group_num, max_value);  // NOLINT
  filter_tensor->reset_data_ptr(new_data);
}

void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, (int)num, (int)channel,  // NOLINT
                           (int)height,                        // NOLINT
                           (int)width, 1, max_value);          // NOLINT
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array, int filter_num,
                             int filter_channel) {
  int num_after_alignment =
      filter::calc_aligned_num(filter_channel, filter_channel);
  bias_scale::format_bias_scale_array(bias_scale_array, filter_num,
                                      num_after_alignment);
}

void format_concat_output(framework::Tensor *out, int height, int width,
                          uint32_t out_channel) {
  auto data_ptr = fpga_malloc(out_channel * height * width * sizeof(half));
  auto ddim = framework::make_ddim({1, out_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

int format_conv_data(framework::Tensor *filter_tensor,
                     framework::Tensor *ofm_tensor, float *bs_ptr, int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int aligned_num = get_aligned_filter_num(filter_tensor);
  fpga::format_bias_scale_array(&bs_ptr,
                                (int)filter_tensor->dims()[0],  // NOLINT
                                aligned_num);
  int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
  fpga::format_fp16_ofm(ofm_tensor, aligned_channel);
  DLOG << aligned_channel;
  return aligned_channel;
}

int format_fc_data(framework::Tensor *filter_tensor,
                   framework::Tensor *ofm_tensor, float *bs_ptr) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_fc_filter(filter_tensor, max_value);
  int aligned_num = get_aligned_filter_num(filter_tensor);
  fpga::format_bias_scale_array(&bs_ptr,
                                (int)filter_tensor->dims()[0],  // NOLINT
                                aligned_num);
  int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
  fpga::format_fp16_ofm(ofm_tensor, aligned_channel);
  DLOG << aligned_channel;
  return aligned_channel;
}

void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
  auto out_ptr = out->data<float>();

  arg->group_num = (uint32_t)group_num;
  arg->split_num = 1;
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
246
  arg->conv_arg =
qnqinan's avatar
qnqinan 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
  arg->concat_arg.channel_num =
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT

  for (int i = 0; i < n; i++) {
Z
zhangyang 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].sb_address = bs_ptr;
    arg->conv_arg[i].filter_address = (int8_t *)filter_ptr;  // NOLINT
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = arg->filter_num;
    arg->conv_arg[i].group_num = (uint32_t)group_num;

    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];

    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;

    arg->conv_arg[i].output.address = out_ptr;
    arg->conv_arg[i].output.scale_address = out->scale;

    int num_after_alignment =
        filter::calc_aligned_num((int)input->dims()[1], arg->filter_num);
    arg->conv_arg[i].free_space =
        fpga_malloc(num_after_alignment * 2 * sizeof(half));
qnqinan's avatar
qnqinan 已提交
291 292 293 294 295
  }
}

}  // namespace fpga
}  // namespace paddle_mobile