cxx_api.cc 10.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26
#include <string>
#include <utility>
#include <vector>
#include "lite/utils/io.h"

namespace paddle {
namespace lite {

27 28 29 30 31 32 33
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
34
void Predictor::SaveModel(const std::string &dir,
35 36
                          lite_api::LiteModelType model_type,
                          bool record_info) {
Y
Yan Chunwei 已提交
37 38 39 40
  if (!program_) {
    GenRuntimeProgram();
  }
  program_->SaveOpInfosToProgram(&program_desc_);
41
  program_->UpdateVarsOfProgram(&program_desc_);
Y
Yan Chunwei 已提交
42 43
  switch (model_type) {
    case lite_api::LiteModelType::kProtobuf:
44
      SaveModelPb(dir, *program_->exec_scope(), program_desc_, true);
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51
      break;
    case lite_api::LiteModelType::kNaiveBuffer:
      SaveModelNaive(dir, *program_->exec_scope(), program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  if (record_info) {
    SaveOpKernelInfo(dir);
  }
}

void Predictor::SaveOpKernelInfo(const std::string &model_dir) {
  std::set<std::string> ops_info;
  std::set<std::string> kernels_info;
  const auto &instructions_ = program_->instructions();
  for (auto &node : instructions_) {
    // parse op type infomation
    auto op = node.op()->op_info();
    ops_info.insert(op->Type());
    // parse kernel type information
    std::string kernel_type_str =
        node.kernel()->op_type() + "," + TargetRepr(node.kernel()->target()) +
        "," + PrecisionRepr(node.kernel()->precision()) + "," +
        DataLayoutRepr(node.kernel()->layout()) + "," + node.kernel()->alias();
    kernels_info.insert(kernel_type_str);
  }

  // get souce_file name from op type and kernel type
  auto op2pathmap = OpKernelInfoCollector::Global().GetOp2PathDict();
  auto kernel2pathmap = OpKernelInfoCollector::Global().GetKernel2PathDict();

  // write used op and kernel info into files
  std::string opf_path = model_dir + "/" + TAILORD_OPS_LIST_NAME;
  std::string opf_source_path =
      model_dir + "/" + TAILORD_OPS_SOURCE_LIST_FILENAME;
  std::string kpf_path = model_dir + "/" + TAILORD_KERNELS_LIST_NAME;
  std::string kpf_source_path =
      model_dir + "/" + TAILORD_KERNELS_SOURCE_LIST_FILENAME;
  std::map<std::string, std::string> op2path;

  std::FILE *opf = std::fopen(opf_path.c_str(), "w");
  std::FILE *opf_source = std::fopen(opf_source_path.c_str(), "w");
  std::FILE *kpf = std::fopen(kpf_path.c_str(), "w");
  std::FILE *kpf_source = std::fopen(kpf_source_path.c_str(), "w");
  std::vector<std::string> opcompile;
  std::vector<std::string> kernelcompile;

  if (nullptr == opf || nullptr == opf_source || nullptr == opf ||
      nullptr == kpf_source) {
    LOG(FATAL) << "failed to create info file into: " << model_dir;
  }
  for (auto op_info = ops_info.begin(); op_info != ops_info.end(); op_info++) {
    fputs(op_info->c_str(), opf);
    fputc('\n', opf);
    std::string op_path = op2pathmap[*op_info];
    fputs(op_path.c_str(), opf_source);
    fputc('\n', opf_source);
  }
  std::fclose(opf_source);
  std::fclose(opf);
  LOG(INFO) << "operators information of tailored model is stored into: "
            << opf_path;

  // write Kernel_type and Kernel_path into file
  for (auto kernel_info = kernels_info.begin();
       kernel_info != kernels_info.end();
       kernel_info++) {
    fputs(kernel_info->c_str(), kpf);
    fputc('\n', kpf);
    std::string kernel_path = kernel2pathmap[*kernel_info];
    fputs(kernel_path.c_str(), kpf_source);
    fputc('\n', kpf_source);
    if (kernel_path == "conv_compute.cc") {
      fputs(
          "conv_depthwise.cc\nconv_direct.cc\nconv_gemmlike.cc\nconv_"
          "winograd.cc\n",
          kpf_source);
    }
  }
  std::fclose(kpf_source);
  std::fclose(kpf);
  LOG(INFO) << "kernels information of tailored model is stored into: "
            << kpf_path;
Y
Yan Chunwei 已提交
129 130 131
}

lite::Tensor *Predictor::GetInput(size_t offset) {
132 133 134 135 136 137 138
  CHECK(input_names_.size() > offset)
      << "The network has " << input_names_.size() << " inputs"
      << ", the offset should be less than this.";
  auto *in_var = exec_scope_->FindVar(input_names_[offset]);
  CHECK(in_var) << "no fatch variable " << input_names_[offset]
                << " in exec_scope";
  return in_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
139 140
}

141
// get inputs names
S
sangoly 已提交
142
std::vector<std::string> Predictor::GetInputNames() { return input_names_; }
143
// get outputnames
S
sangoly 已提交
144
std::vector<std::string> Predictor::GetOutputNames() { return output_names_; }
145 146 147
// append the names of inputs and outputs into input_names_ and output_names_
void Predictor::PrepareFeedFetch() {
  auto current_block = program_desc_.GetBlock<cpp::BlockDesc>(0);
148 149
  std::vector<cpp::OpDesc *> feeds;
  std::vector<cpp::OpDesc *> fetchs;
150
  for (size_t i = 0; i < current_block->OpsSize(); i++) {
151 152
    auto op = current_block->GetOp<cpp::OpDesc>(i);
    if (op->Type() == "feed") {
153
      feeds.push_back(op);
154
    } else if (op->Type() == "fetch") {
155
      fetchs.push_back(op);
156 157
    }
  }
158 159
  input_names_.resize(feeds.size());
  output_names_.resize(fetchs.size());
160
  for (size_t i = 0; i < feeds.size(); i++) {
161 162 163
    input_names_[feeds[i]->GetAttr<int>("col")] =
        feeds[i]->Output("Out").front();
  }
164
  for (size_t i = 0; i < fetchs.size(); i++) {
165 166 167
    output_names_[fetchs[i]->GetAttr<int>("col")] =
        fetchs[i]->Input("X").front();
  }
168 169
}

Y
Yan Chunwei 已提交
170
const lite::Tensor *Predictor::GetOutput(size_t offset) const {
171 172 173 174 175 176 177
  CHECK(output_names_.size() > offset)
      << "The network has " << output_names_.size() << " outputs"
      << ", the offset should be less than this.";
  const std::string name = output_names_.at(offset);
  auto *out_var = exec_scope_->FindVar(name);
  CHECK(out_var) << "no fatch variable " << name << " in exec_scope";
  return out_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
178 179
}

180 181 182 183 184 185 186 187
std::vector<const lite::Tensor *> Predictor::GetOutputs() const {
  std::vector<const lite::Tensor *> outputs;
  size_t out_size = output_names_.size();
  for (size_t i = 0; i < out_size; i++) {
    const std::string name = output_names_.at(i);
    outputs.push_back(GetTensor(name));
  }
  return outputs;
T
TianXiaogang 已提交
188 189
}

Y
Yan Chunwei 已提交
190 191 192 193 194
const cpp::ProgramDesc &Predictor::program_desc() const {
  return program_desc_;
}
const RuntimeProgram &Predictor::runtime_program() const { return *program_; }

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
void Predictor::Build(const lite_api::CxxConfig &config,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
                      lite_api::LiteModelType model_type) {
  const std::string &model_path = config.model_dir();
  const std::string &model_file = config.model_file();
  const std::string &param_file = config.param_file();
  const bool model_from_memory = config.model_from_memory();
  LOG(INFO) << "load from memory " << model_from_memory;

  Build(model_path,
        model_file,
        param_file,
        valid_places,
        passes,
        model_type,
        model_from_memory);
}
Y
Yan Chunwei 已提交
213
void Predictor::Build(const std::string &model_path,
214 215
                      const std::string &model_file,
                      const std::string &param_file,
Y
Yan Chunwei 已提交
216 217
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
218 219
                      lite_api::LiteModelType model_type,
                      bool model_from_memory) {
Y
Yan Chunwei 已提交
220
  switch (model_type) {
221 222 223 224 225 226 227 228 229 230
    case lite_api::LiteModelType::kProtobuf: {
      bool combined_param = false;
      if (!model_file.empty() && !param_file.empty()) {
        combined_param = true;
      }
      LoadModelPb(model_path,
                  model_file,
                  param_file,
                  scope_.get(),
                  &program_desc_,
231 232
                  combined_param,
                  model_from_memory);
233
    } break;
Y
Yan Chunwei 已提交
234
    case lite_api::LiteModelType::kNaiveBuffer:
235 236
      CHECK(!model_path.empty())
          << "NaiveBuffer backend only supported combined param";
Y
Yan Chunwei 已提交
237 238 239 240 241
      LoadModelNaive(model_path, scope_.get(), &program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
242
  Build(program_desc_, valid_places, passes);
Y
Yan Chunwei 已提交
243 244 245 246 247 248
}

void Predictor::Build(const cpp::ProgramDesc &desc,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes) {
  program_desc_ = desc;
249 250 251 252 253 254
  std::vector<Place> inner_places = valid_places;
  inner_places.emplace_back(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny));
  inner_places.emplace_back(
      TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW));
  Program program(desc, scope_, inner_places);
  /// The first place in valid_places is
Y
Yan Chunwei 已提交
255 256 257
  core::KernelPickFactor factor;
  factor.ConsiderTarget();
  factor.ConsiderPrecision();
258
  factor.ConsiderDataLayout();
259
  optimizer_.Run(std::move(program), inner_places, factor, passes);
Y
Yan Chunwei 已提交
260
  exec_scope_ = optimizer_.exec_scope();
261
  PrepareFeedFetch();
Y
Yan Chunwei 已提交
262 263 264 265 266 267 268 269 270 271 272 273
}

void Predictor::GenRuntimeProgram() {
  program_ = optimizer_.GenRuntimeProgram();
  CHECK_EQ(exec_scope_, program_->exec_scope());
  program_generated_ = true;
}

const lite::Tensor *Predictor::GetTensor(const std::string &name) const {
  auto *var = exec_scope_->FindVar(name);
  return &var->Get<lite::Tensor>();
}
274 275
// get input by name
lite::Tensor *Predictor::GetInputByName(const std::string &name) {
276 277
  auto element = std::find(input_names_.begin(), input_names_.end(), name);
  if (element == input_names_.end()) {
278 279
    LOG(ERROR) << "Model do not have input named with: [" << name
               << "], model's inputs include:";
280
    for (size_t i = 0; i < input_names_.size(); i++) {
281 282
      LOG(ERROR) << "[" << input_names_[i] << "]";
    }
283
    return nullptr;
284
  } else {
285 286
    int position = std::distance(input_names_.begin(), element);
    return GetInput(position);
287 288
  }
}
Y
Yan Chunwei 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302

#ifdef LITE_WITH_TRAIN
void Predictor::FeedVars(const std::vector<framework::Tensor> &tensors) {
  auto var = scope_->FindVar("feed");
  auto &feed_list = *(var->GetMutable<std::vector<lite::Tensor>>());
  feed_list.resize(tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i)
    feed_list[i].ShareDataWith(tensors[i]);
}
#endif

}  // namespace lite
}  // namespace paddle