conv_depthwise.cc 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/conv_depthwise.h"
#include "lite/backends/arm/math/conv_block_utils.h"
#include "lite/backends/arm/math/conv_impl.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <>
void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  auto kw = w_dims[3];
31
  auto paddings = *param.paddings;
32 33
  // select dw conv kernel
  if (kw == 3) {
34
    // VLOG(5) << "invoke 3x3 dw conv fp32";
35 36
    bool pads_less = ((paddings[1] < 2) && (paddings[3] < 2));
    if (pads_less && paddings[0] == paddings[2] &&
H
HappyAngel 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        (paddings[0] == 0 || paddings[0] == 1)) {
      flag_trans_weights_ = false;
    } else {
      // trans weights
      constexpr int cblock = 4;
      auto oc = w_dims[0];
      auto kh = w_dims[2];
      auto cround = ROUNDUP(oc, cblock);
      weights_.Resize({cround, 1, kh, kw});
      auto w_data = weights_.mutable_data<float>();
      auto w_data_in = param.filter->data<float>();
      lite::arm::math::conv_trans_weights_numc(
          w_data_in, w_data, oc, 1, cblock, kh * kw);
      flag_trans_weights_ = true;
    }
52
    impl_ = lite::arm::math::conv_depthwise_3x3_fp32;
53 54 55
#ifdef LITE_WITH_PROFILE
    kernel_func_name_ = "conv_depthwise_3x3_fp32";
#endif
56
  } else if (kw == 5) {
57
    // VLOG(5) << "invoke 5x5 dw conv fp32";
58
    auto strides = param.strides;
C
chenjiaoAngel 已提交
59 60
    auto hin = param.x->dims()[2];
    auto win = param.x->dims()[3];
C
chenjiaoAngel 已提交
61
    if (win >= kw && hin >= kw && (strides[0] == 1 && strides[1] == 1)) {
C
chenjiaoAngel 已提交
62 63 64 65 66 67 68
      flag_trans_weights_ = false;
      impl_ = lite::arm::math::conv_depthwise_5x5_fp32;
#ifdef LITE_WITH_PROFILE
      kernel_func_name_ = "conv_depthwise_5x5_fp32";
#endif
    } else if ((strides[0] == 1 && strides[1] == 1) ||
               (strides[0] == 2 && strides[1] == 2)) {
69
      // trans weights
70 71 72 73 74 75 76 77 78 79
      constexpr int cblock = 4;
      auto oc = w_dims[0];
      auto kh = w_dims[2];
      auto cround = ROUNDUP(oc, cblock);
      weights_.Resize({cround, 1, kh, kw});
      auto w_data = weights_.mutable_data<float>();
      auto w_data_in = param.filter->data<float>();
      lite::arm::math::conv_trans_weights_numc(
          w_data_in, w_data, oc, 1, cblock, kh * kw);
      flag_trans_weights_ = true;
80
      impl_ = lite::arm::math::conv_depthwise_5x5_fp32;
81 82 83
#ifdef LITE_WITH_PROFILE
      kernel_func_name_ = "conv_depthwise_5x5_fp32";
#endif
84
    } else {
85 86
      LOG(FATAL)
          << "5x5 depthwise conv only support stride == 1 or stride == 2";
87
    }
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  int kh = w_dims[2];
  int kw = w_dims[3];
  int oc = w_dims[0];
  /// update scale
  float in_scale = param.input_scale;
  auto& scale = param.weight_scale;
  CHECK(scale.size() == 1 || scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  w_scale_.resize(oc);
  for (int i = 0; i < oc; ++i) {
    if (scale.size() == 1) {
      w_scale_[i] = scale[0] * in_scale;
    } else {
      w_scale_[i] = scale[i] * in_scale;
    }
  }
  /// select dw conv kernel
  if (kw == 3) {
Y
yiicy 已提交
117
    // trans weights
118
    // VLOG(5) << "invoke 3x3 dw conv int8 kernel fp32 out";
119
    impl_ = lite::arm::math::conv_depthwise_3x3_int8_fp32;
120 121 122
#ifdef LITE_WITH_PROFILE
    kernel_func_name_ = "conv_depthwise_3x3_int8_fp32";
#endif
123 124 125 126 127 128
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9);
    flag_trans_weights_ = true;
Y
yiicy 已提交
129 130
  } else if (kw == 5) {
    // trans weights
131
    // VLOG(5) << "invoke 5x5 dw conv int8 kernel fp32 out";
Y
yiicy 已提交
132
    impl_ = lite::arm::math::conv_depthwise_5x5_int8_fp32;
133 134 135
#ifdef LITE_WITH_PROFILE
    kernel_func_name_ = "conv_depthwise_5x5_int8_fp32";
#endif
Y
yiicy 已提交
136 137 138 139 140 141
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 25);
    flag_trans_weights_ = true;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  auto w_dims = param.filter->dims();
  int kw = w_dims[3];
  int kh = w_dims[2];
  int oc = w_dims[0];
  /// update scale
  float in_scale = param.input_scale;
  float out_scale = param.output_scale;
  auto& scale = param.weight_scale;
  CHECK(scale.size() == 1 || scale.size() == oc)
      << "weights scale size must = filter size or = 1";
  w_scale_.resize(oc);
  for (int i = 0; i < oc; ++i) {
    if (scale.size() == 1) {
      w_scale_[i] = scale[0] * in_scale / out_scale;
    } else {
      w_scale_[i] = scale[i] * in_scale / out_scale;
    }
  }
  /// update bias
  if (param.bias) {
    bias_.Resize(param.bias->dims());
    auto ptr = bias_.mutable_data<float>();
    auto ptr_in = param.bias->data<float>();
    for (int i = 0; i < bias_.numel(); ++i) {
      ptr[i] = ptr_in[i] / out_scale;
    }
    flag_trans_bias_ = true;
  }
180 181 182 183 184 185
  //! update relu6 parameter
  if (param.activation_param.has_active &&
      param.activation_param.active_type == lite_api::ActivationType::kRelu6) {
    param.activation_param.Relu_clipped_coef =
        param.activation_param.Relu_clipped_coef / param.output_scale;
  }
186 187
  /// select dw conv kernel
  if (kw == 3) {
Y
yiicy 已提交
188
    // trans weights
189
    // VLOG(5) << "invoke 3x3 dw conv int8 kernel int8 out";
190
    impl_ = lite::arm::math::conv_depthwise_3x3_int8_int8;
191 192 193
#ifdef LITE_WITH_PROFILE
    kernel_func_name_ = "conv_depthwise_3x3_int8_int8";
#endif
194 195 196 197 198 199
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9);
    flag_trans_weights_ = true;
Y
yiicy 已提交
200 201
  } else if (kw == 5) {
    // trans weights
202
    // VLOG(5) << "invoke 5x5 dw conv int8 kernel int8 out";
Y
yiicy 已提交
203
    impl_ = lite::arm::math::conv_depthwise_5x5_int8_int8;
204 205 206
#ifdef LITE_WITH_PROFILE
    kernel_func_name_ = "conv_depthwise_5x5_int8_int8";
#endif
Y
yiicy 已提交
207 208 209 210 211 212
    int cround = ROUNDUP(w_dims[0], 8);
    weights_.Resize({cround / 8, 1, kh * kw, 8});
    auto wptr = param.filter->data<int8_t>();
    auto wptr_new = weights_.mutable_data<int8_t>();
    lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 25);
    flag_trans_weights_ = true;
213 214 215 216 217
  } else {
    LOG(FATAL) << "this type dw conv not impl";
  }
}

218 219 220 221 222 223 224 225
#ifdef LITE_WITH_PROFILE
template <>
void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::
    SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
  ch->kernel_func_name = kernel_func_name_;
}
#endif

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
template <>
void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<float>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<float>()
                                           : param.filter->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

268 269 270 271 272 273 274 275
#ifdef LITE_WITH_PROFILE
template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::
    SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
  ch->kernel_func_name = kernel_func_name_;
}
#endif

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<int8_t>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<int8_t>()
                                           : param.filter->data<int8_t>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

318 319 320 321 322 323 324 325
#ifdef LITE_WITH_PROFILE
template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::
    SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
  ch->kernel_func_name = kernel_func_name_;
}
#endif

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
template <>
void DepthwiseConv<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(this->ctx_);
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<int8_t>();
  const auto* w_data = flag_trans_weights_ ? weights_.data<int8_t>()
                                           : param.filter->data<int8_t>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  auto* o_data = param.output->mutable_data<int8_t>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  impl_(i_data,
        o_data,
        bs,
        oc,
        oh,
        ow,
        ic,
        ih,
        iw,
        w_data,
        b_data,
        param,
        &ctx,
        w_scale_.data());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle