“c6950ab2573aece1fa0728aef1446bd8b0b8c1a0”上不存在“paddle/phi/kernels/funcs/math_function_impl.h”
sigmoid_kernel.cpp 1.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SIGMOID_OP

#include "operators/kernel/activation_kernel.h"
qnqinan's avatar
qnqinan 已提交
18

19 20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
bool SigmoidKernel<FPGA, float>::Init(SigmoidParam<FPGA> *param) {
qnqinan's avatar
qnqinan 已提交
24 25 26
  paddle_mobile::fpga::ActivationType activation_enable =
      paddle_mobile::fpga::SIGMOID;
  int16_t leaky_relu_negative_slope = 0;
27 28 29
  auto input = const_cast<Tensor *>(param->InputX());
  auto input_ptr = input->data<float>();
  auto out = param->Out();
qnqinan's avatar
qnqinan 已提交
30
  fpga::format_fp16_ofm(out);
31 32 33

  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_data_type = fpga::DATA_TYPE_FP16;
qnqinan's avatar
qnqinan 已提交
34
  args.output_data_type = fpga::DATA_TYPE_FP16;
35 36 37 38 39 40
  args.image.address = input_ptr;
  args.image.height =
      (input->dims().size() == 4) ? (uint32_t)input->dims()[2] : 1;
  args.image.width =
      (input->dims().size() == 4) ? (uint32_t)input->dims()[3] : 1;
  args.image.channels = (uint32_t)input->dims()[1];
qnqinan's avatar
qnqinan 已提交
41 42 43 44
  args.output.address = out->data<float>();
  args.output.scale_address = out->scale;
  args.output.activation.activation_type = activation_enable;
  args.output.activation.leaky_relu_negative_slope = leaky_relu_negative_slope;
45 46 47 48 49 50 51
  param->SetFpgaArgs(args);
  return true;
}
template <>
void SigmoidKernel<FPGA, float>::Compute(const SigmoidParam<FPGA> &param) {
  fpga::PerformBypass(param.FpgaArgs());
}
qnqinan's avatar
qnqinan 已提交
52

53 54 55 56
}  // namespace operators
}  // namespace paddle_mobile

#endif